innovation marketplace

TECHINNOVATION TECH OFFERS

Discover new technologies by our partners

TechInnovation 2023 showcases more than 100 latest technologies and innovations in sustainability, health and well-being and AI in healthcare from our partners in Hong Kong SAR, Korea, Japan, Singapore, Slovakia, and Thailand. Enterprises interested in these technology offers can register at www.techinnovation.com.sg to meet these technology providers and arrange for your 1-1 business meeting.

Advanced Electrodes and Electrolysers for Cost-Effective Green Hydrogen Production
As a clean burning fuel, green hydrogen plays a critical role in achieving net zero emissions. A major challenge is the high cost of the electrolyser due to inefficient production and the use of precious metals. Innovation in green hydrogen is urgently required to lower its cost and bring it to parity with conventional fossil fuel based grey hydrogen. A Singapore-based startup has developed a proprietary super-alloy nano-structured material using earth's abundant and cost-effective materials for use in all major electrolyser technologies. These components achieve dramatically higher water-splitting capability and anti-corrosion properties versus commercially available solutions, while ensuring electrode durability, increasing energy efficiency and reducing overall cost. The startup is capable of supporting the manufacturing of core hardware components for electrolyser cells, stacks, and systems, enabling end users to produce the most affordable green hydrogen. The startup is seeking partnerships with manufacturers (OEMs) of alkaline (AWE), proton exchange membrane (PEM) electrolysers and leading hydrogen users, including energy majors, utilities, and industrial gas companies, to deploy modular stand-alone anion exchange membrane (AEM) electrolyser systems for pilot projects or for test-bedding at industrial scale.
Overall Equipment Effectiveness Index for Productivity Improvement of Legacy Equipment
Overall Equipment Effectiveness (OEE) is the most commonly used metric to understand, measure, and improve manufacturing productivity, providing insights into the efficiency of a manufacturing process by evaluating key aspects of equipment performance (i.e., availability, performance, quality). However, production plants with legacy equipment often face challenges collecting such data, as typically either complicated system modifications or extensive cabling works may be required. This technology offers a unique IoT solution to this challenge by extracting production equipment status from the equipment tower light signals by means of a sensor node connected to a light sensor in a non-intrusive manner. No meddling with existing machine circuitry is needed. A key feature of this technology is the integrated built-in Human Machine Interface (HMI) on the sensor node for operators to provide inputs on the machine's non-operation. Comprising cost-efficient hard buttons for user feedback instead of the usual tablet PC, it offers ease of use and ruggedness for the production floor environment.
Glycemic Index (GI) Speed Test for Quick And Accurate GI Determination in Food Products
This technology is a rapid method to determine the Glycaemic Index (GI) in food product. The GI is a way of measuring how fast carbohydrate is absorbed into body and how that affects blood glucose levels. The technology is an in-vitro methodology / workflow that combines sample processing, enzymatic digestion and endpoint data analysis based in a laboratory. The Health Promotion Board in Singapore (HPB) has been actively engaging the public with its “Healthier Choice Symbol” (HCS) programme to encourage adoption of healthier diet options. For some category such as cereals and convenience meals, the GI logo is integrated with HCS. We envisioned more integration will take place to better serve consumers and health care providers in diet management. Currently, most food labels lack GI ratings, which limits information to consumers. The current “gold standard” of measuring GI involves measurement of blood glucose in human volunteers and this in vivo method suffers from variability issues in its GI measurements, along with significant lead time and cost of this method. The technology offered provides a solution for faster, cost-effective, and versatile GI screening of food, encouraging food manufacturing industry to adopt GI measurements as part of their product development and labelling GI on packaging, thus benefiting the public. The technology is available for IP licensing and R&D collaboration with industrial partners who are keen to adopt the solution.
Probiotic Dairy-Free Beverages with Bioactive Properties
A non-dairy fermented beverage is now able to have enhanced levels of probiotics and bioactives. This fermentation process releases the bioactives from the plant material which is used as the base and elevates the levels of the probiotic bacteria and health promoting end products. The technology includes optimizing the beverage production for a particular probiotic. This probiotic has proven health benefits and has been shown to exhibit enhanced survival in the fermented beverage. With this fermentation process, the non-dairy beverage will be able to deliver high levels of efficacious probiotic together health promoting bioactive compounds. This will be suitable for people who are seeking to have a healthy gut microbiome and overall good health. The technology owner is seeking industry collaborators for commercial formulaton to expand the current technology scope such as freeze dried snacks and or to scale the technology up for commercialisation.
Electrochromic Smart Windows with Metallo-Supramolecular Polymers
Formed by the coordination of metal ions to organic ditopic ligands, metallo-supramolecular polymers (MSPs) are a class of polymers that exhibit electrochromic properties. Due to the nature of the MSPs, electrochromic materials of high stability and varying colours can be fabricated for several applications including smart windows, wearable IoT displays and displays. This technology on offer is a synthesis method to produce MSPs for fabrication of smart windows. By coating the MSP layer between layers of glass, indium tin oxide (ITO) and electrodes, electrochromic windows with high coloration efficiency, high stability and wide colour variation can be obtained. The incorporation of such electrochromic materials offers an energy-efficient solution to control the optical properties of windows and improve occupants’ comfort. The technology owner is seeking collaborations with partners for co-development projects including the fabrication of the MSPs and assembly of the components for smart window applications.
Bipolar Nanoporous Compact Filter for Charged Particles Removal
Heavy metal pollution is a significant environmental issue with detrimental health effects even at low concentrations. The bipolar nanoporous membrane features a triple-layer structure, comprising a membrane base layer, a selective layer, and a protective layer. This technology relates to a compact, bipolar nanoporous membrane that effectively removes dissolved heavy metal ions from industrial wastewater and drinking water. This configuration allows the membrane to efficiently adsorb and reject charged pollutants and heavy metal ions while minimizing fouling through its antifouling properties. To implement this technology, a portable water filtration bottle has been specifically designed, fabricated, and evaluated. The filtration bottle incorporates a single-stage bipolar nanoporous membrane module, serving as a reusable filter. The technology demonstrates rejection rates (>95%) for divalent and trivalent heavy metal ions such as Arsenic (As), Copper (Cu2+), Cadmium (Cd2+), Lead (Pb2+), and Chromium (Cr3+) at concentrations ranging from 20 ppm to 100 ppm. The compact and low-pressure nature of this technology makes it highly versatile and suitable for various applications. It offers a convenient and reusable filtration solution for industrial wastewater treatment and the purification of drinking water. By effectively addressing the challenge of heavy metal pollution, this technology contributes to environmental protection and safeguarding human health. Overall, this advanced water filtration solution combines the advantages of a bipolar nanoporous membrane and a portable filtration system. Its exceptional rejection capabilities, energy efficiency, and versatility make it a promising tool in mitigating heavy metal contamination and ensuring access to clean and safe water. The technology provider is looking for interested parties from the water industry to license or acquire this technology.
Water Treatment and Resource Recovery using Electrocatalytic System
Excessive use of nitrogen-based fertilizers leads to nutrient runoff into water bodies, which can severely harm aquatic ecosystems and cause eutrophication. Therefore, it is important to treat wastewater containing these nutrients. This technology takes an innovative step by not only removing nitrogen from wastewater but also recovering it and converting it into ammonia, the key ingredient in fertilizers. Using electrocatalysis technology and cost-effective non-precious metal catalysts, nitrogen is recovered from municipal and industrial wastewater. The technology is suitable for businesses with space constraints, as it comes in a decentralized and scalable device. The technology provider is looking for partners to test-bed the technology, including but not limited to owners of green roofs, urban farms, greenhouses, and household planting sites, as well as wholesalers and retailers of plants.
Bioaugmentation for Soil and Wastewater Treatment
Conventional soil remediation methods, such as thermal desorption, are costly and require the disposal of the resource, taking up space in landfills. These methods also alter the physical properties of the soil, which can have negative consequences for soil health and plant growth. Bioaugmentation is a promising new technology that offers a more sustainable and environmentally friendly alternative to conventional soil remediation methods. Bioaugmentation involves the addition of chemical-degrading microorganisms to the contaminated site. These microorganisms break down the pollutants into harmless byproducts, allowing the land, soil, and water to be reused. The bioaugmentation technology developed is highly portable and does not require the deployment of large machinery on-site. This makes it a cost-effective and efficient option for soil remediation, especially in remote or difficult-to-access areas. The soil after treatment is compliant with the current United States Environmental Protection Agency (US-EPA) and Australian standards (below 1,000 ppm Total Petroleum Hydrocarbons (TPH)). The technology has also been proven to be effective in tropical climates. Overall, bioaugmentation is a promising new technology that offers a more sustainable and environmentally friendly alternative to conventional soil remediation methods. It is a cost-effective and efficient option for soil remediation, especially in remote or difficult-to-access areas. The technology has also been proven to be effective in tropical climates. The technology provider is seeking a partner to test the feasibility of our treated soil for farming and land restoration purposes, and to develop a formulation for soil rehabilitation for farming and food production without the use of fertilizers.
Personalised Wearable Cooling Device
As climate change has led to hotter days, people are looking for ways to stay cool on the go. Whether for daily commutes, outdoor adventures, or work-related trips, there is a growing demand for portable cooling solutions. This technology offers a platform that can be applied to various wearable devices to cool down the human body. The battery-powered thermoelectric system is small, lightweight, and portable and can be used to create a variety of cooling products. This technology has the potential to make a real difference in people's lives. It can help people stay cool and comfortable in hot weather, which can improve their productivity, safety, and overall well-being. The technology provider is seeking collaboration partners to leverage this innovative cooling solution to develop alternative applications such as cooling sports equipment or personal protection devices.