innovation marketplace

TECHINNOVATION TECH OFFERS

Discover new technologies by our partners

TechInnovation showcases hundreds of the latest technologies and innovations in 'Sustainable Urban Living' from partners in Singapore and beyond. This event features a unique blend of content-rich conferences, exhibitions, and business networking over three days, and attendees can explore urban solutions, agriculture and food, and health and wellness, all underpinned by themes of innovation, artificial intelligence, digitalisation, and sustainability.

Enterprises interested in these technology offers can register at www.techinnovation.com.sg to meet these technology providers and arrange 1-1 business meetings.

Therapy for Diabetic Foot Ulcers with Foot Cover and Disinfection System
Diabetic foot ulcers (DFUs) are a serious and common complication of diabetes, often leading to infections, amputations, and prolonged hospitalizations. Even with current standard of care, treatment of DFUs is still challenging, and may not always prevent severe outcomes. This therapy system integrates advanced wound management techniques, focusing on enhancing wound healing, off-loading pressure from vulnerable areas, and improving infection control. Traditional treatments lack comprehensive solutions for wound healing enhancement, pressure off-loading, and effective infection control. This therapy system combines these features into a single solution, offering accelerated healing while its integrated disinfection mechanism helps manage infections with ease. The therapy system is efficient and user-friendly, suitable for deployment in various healthcare settings. Ideal collaboration partners include medical device manufacturers, wound care specialists, and healthcare institutions focused on innovative treatment solutions.
Eco-friendly Coating for Preservation of Tropical Fruits
Globally, the post-harvest loss of tropical fruits due to short shelf life is estimated to be around 30-50% of total production. This translates to approximately 30 million tons of fruit wasted each year. The economic cost is substantial, amounting to billions of dollars annually, affecting producers, retailers, and consumers due to reduced availability and increased prices. Proliferation of fungal and bacterial population further adversely impact the shelf life and fruit health. Our innovation offers tailored, edible coating using regulatory approved ingredients specific to the fruit family and microbiomes observed in the farms. Tests conducted in labs and farms over the past two years have provided positive results for tropical fruits such as mango, avocado and papaya in doubling shelf life. This solution has multiple benefits to the stakeholders in the industry value chain. The farmer and aggregator can sell with better assurance to wider export markets and also charge a premium for fresher, tastier and longer lasting fruits. This also provides more time for retailers to sell the produce and to reduce dependency on cold storage and costly supply chain management. This innovation contributes significantly towards better food security and sustainability goals. The technology provider is seeking to conduct further trial with farmers, aggregators in Asia to enhance their solution.
Nutritious Plant-based Abalone
The plant-based abalone is designed and prepared with mung beans, which are rich in protein, but the mung bean protein is often treated as a side stream in the industry. The plant-based abalone contains protein content comparable to that of real abalone. It also contains enhanced nutrients such as essential fatty acids which can potentially play a key role in heart health, cancer prevention, cognitive function, skin health, and obesity prevention. In addition, when cooked, this plant-based abalone presents physical properties like the real abalone, at a fraction of the cost. The technology provider is working on larger scale trials to develop optimal methods for central kitchen operations and looking to collaborate with the food industry on R&D and also to license the technology.
Fast and Comprehensive Analyzing Technique of Anthocyanins in Crops using PESI/MS/MS
The quality evaluation of crops like strawberries is currently conducted with simple methods such as the use of a saccharometer or colorimeter, or a laborious and time-consuming instrumental analysis. This technology is a simple and rapid method to analysis quantifiably various quality and functional components of agricultural crops including sugars, organic acids, amino acids, glucosinolates. One example is anthocyanin. Anthocyanins are compounds related to the color of plants. They also have beneficial effects on human health and are used as a supplement. Conventionally, the combination of liquid chromatography and mass spectrometry is used to analyze anthocyanins. This method is not applicable in situ in the agricultural industry because of considerable time and work in the pretreatment of samples. Therefore, this technology can offer the agricultural industry a more convenient yet accurate way to perform quality evaluations of their crops on site.
Precision Contactless Heart Rate and Respiratory Rate Monitoring System
Radar sensor technology, particularly at the millimeter-wave (mmWave) range, offers innovative ways to monitor human health by leveraging electromagnetic waves to gather vital signs non-invasively. This non-contact approach is highly effective for measuring heart rate and respiratory rate, enhancing comfort for users by eliminating the need for physical sensors. This mmWave radar detects small body movements, such as chest expansion and contractions due to breathing, as well as micro-movements from heartbeats. One of the key advantages of this technology is its ability to penetrate clothing and bedding, making it ideal for continuous monitoring in sleep studies, elderly care, and other medical applications. It also functions reliably regardless of lighting conditions or ambient noise, unlike optical or acoustic sensors. This radar technology allows for immediate data collection, enabling quick responses in emergencies and optimizing overall performance.
Privacy First Spatial and Behavioural AI for Smart Spaces
The adoption of Artificial Intelligence (AI) solutions in smart buildings is increasing due to the numerous benefits it brings, from sustainability to energy savings to safety and wellbeing. Due to this, there have been a proliferation of cameras or wearables deployed. However, due to this, there is a growing pushback due to these technologies being invasive to privacy and the user’s way of life. Current non-invasive to privacy vision solution have limited precision in distinguishing multiple objects within a 3D area, reducing their potential integration to current smart solutions. The technology owner has developed an innovative solution to overcome the issues above through the use of advanced infrared thermal array sensors combined with AI-driven analytics software for contactless and continuous monitoring of human activities while preserving privacy. The intelligent spatial and behavioural sensing solution is able to enable multi-user detection with their respective range while maintaining privacy of all users within a 3D space. This results in a modular solution which provides higher precision, more energy efficient and easier integration compared to other traditional thermal sensing cameras. The technology owner is looking for collaborative partners, including smart building facilities providers and IoT technology integrators, which require a sensing solution which prioritises privacy of users first while ensuring complete functionality of detection and range within a 3D space.
Eco-Friendly and Cost-Effective Modular PV Recycling Solution
The global demand for proper end-of-life management of photovoltaic (PV) panels is rising, with an estimated 78 million tonnes of PV waste expected by 2050. Singapore's rapidly expanding solar industry faces a growing challenge of sustainable disposal as it anticipates a solar capacity of over 1.2GW by 2024. According to International Renewable Energy Agency (IRENA), this could result in 3,000 tonnes of PV waste in 2024-2025 and up to 6,600 tonnes by 2030. Given Singapore's limited land space, there is an urgent need for efficient and profitable recycling solutions to minimize solar panel waste going to landfills. This solution enables PV panel recycling through fully mechanical processes housed in a 40-foot shipping container. Unlike traditional methods that use thermal treatments or harmful chemicals, it employs customized robotic and mechanical processes, producing no chemical waste and consuming less energy. As a mobile solution, it can be deployed directly at decommissioning sites, eliminating the need for transport to centralized facilities and significantly reducing logistics costs. This environmentally friendly, cost-effective solution turns PV waste into a profitable business opportunity. It offers a circular, plug-and-play solution for recyclers looking to quickly expand into solar panel recycling and meet market demands efficiently. It delivers environmental, technological, and commercial benefits. The technology owner is keen to collaborate with local and international e-waste recycling companies with established material networks for aluminium, glass, and silicon, as well as partners with advanced extraction technologies or further upcycling capabilities for silicon and silver.
Edible Plant Protein Scaffolds For Cultivated Meat Production
Cultured meat has been hailed as a sustainable future meat production technology, which requires edible and scalable scaffolds to support cell growth. Plant proteins are the most promising raw materials for edible scaffolds but remain underutilized. This technology involves the use of proteins from various grains to produce porous scaffolds and microbeads for cultured meat application. The scaffolds and microbeads could be easily developed with superior properties suitable for cell growth. The plant protein scaffolds and microbeads demonstrate promising potential in providing nutritional value and unique textural characteristics, highlighting the viability of cereal prolamin in promoting cultured meat production.
Oily Wastewater Treatment Technology using High-Performance Oil-Degrading Microorganisms
The increasing use of fats and oils in food processing has led to higher concentrations in industrial effluents, overwhelming traditional wastewater treatment systems and clogging sewer pipes, which disrupts business operations. Commonly used methods like pressurized floating separation are limited and often result in incineration, increasing waste management costs. Rising treatment costs, odor control, and waste management remain significant concerns for factory operators. This technology uses an innovative "organic treatment method" with powerful microorganisms that decompose fats and oils directly from wastewater. These microorganisms can rapidly degrade various fats and oils, including plant, animal, and fish oils, as well as trans fatty acids, even at concentrations over 10,000 mg/L, using a microbial symbiotic system. Efficiently degrade various fats and oils, including plant, animal, fish oils, as well as trans fatty acids. By decomposing fats and oils directly, it reduces the need for physical separation and incineration, cutting down on industrial waste management costs. This approach also supports sustainable waste reduction and mitigates the risk of clogged sewer pipes. Technology has demonstrated the stable performance of oil decomposition in wastewater throughout a year in a field test at a food oil factory.  The technology owner seeks collaboration with food, oil, and other plants with oily wastewater and wastewater treatment facility providers looking for organic solutions for end users.
Close menu