innovation marketplace

TECHINNOVATION TECH OFFERS

Discover new technologies by our partners

TechInnovation showcases hundreds of the latest technologies and innovations in 'Sustainable Urban Living' from partners in Singapore and beyond. This event features a unique blend of content-rich conferences, exhibitions, and business networking over three days, and attendees can explore urban solutions, agriculture and food, and health and wellness, all underpinned by themes of innovation, artificial intelligence, digitalisation, and sustainability.

Enterprises interested in these technology offers can register at www.techinnovation.com.sg to meet these technology providers and arrange 1-1 business meetings.

A Non-Invasive Rapid Test For Diagnosis And Early Relapse Prediction Of Nasopharyngeal Carcinoma
Nasopharyngeal cancer (NPC) is one of the most common head and neck cancers with a geographical predilection. It is usually diagnosed with an advanced-stage disease which still has a relatively low survival rate despite radical definitive treatment. Nasopharyngeal cancer usually affects adults between 35 and 55 years of age and there are no simple non-invasive examinations or blood tests to reliably detect nasopharyngeal cancer at an early stage yet. The gold standard for testing and diagnosing Nasopharyngeal Carcinoma (NPC) typically involves a combination of assessments using 1) Clinical [Endoscopy, Serologic testing for Epstein-Barr Virus (EBV) antibodies, DNA quantification of plasma EBV] ; 2) Pathological [Biopsy] ; 3) Radiological [Imaging-MRI, CT/PET-CT]. NPC is a common malignancy in Hong Kong, Greater Bay Area of China, Singapore, Malaysia, Indonesia and other ASEAN countries. This technology has developed a rapid, accurate, and non-invasive rapid antigen test in diagnosis and early relapse prediction of nasopharyngeal carcinoma. This technology has identified via single-cell RNA sequencing significant diagnostic biomarkers and mutations in tumour subclones or subpopulations which are highly correlated with diagnosis and early treatment relapse of nasopharyngeal carcinoma, respectively. The results were stringently validated with multiple bioinformatics analysis. A 3D-printed nasopharyngeal swab was specially designed to facilitate an easy, rapid, non-invasive, and sensitive method of tumour cell capture and biomarker detection. The technology owner is seeking to partners with global and regional pharmaceutical companies and laboratories with diagnostic facilities and expertise.
AI Platform for Maritime Carbon Compliance and Operational Efficiency
Maritime carbon emissions are a significant contributor global climate change. The maritime industry faces increasing pressure to comply with stringent carbon emissions regulations from entities like the European Union (EU) and the International Maritime Organization (IMO). Traditional compliance methods are often manual, time-consuming, and prone to errors, leading to increased operational costs and the risk of hefty non-compliance penalties. This technology is an artificial intelligence (AI) powered platform that automates data collection, emissions calculation, and regulatory reporting for maritime carbon compliance. Seamlessly integrating with existing vessel data systems, it utilizes advanced machine learning algorithms to provide real-time tracking of carbon emissions and Carbon Intensity Indicator (CII) performance across entire fleets. The AI-platform also automates the parsing and extraction of data from various document formats using cutting-edge natural language processing (NLP) and machine learning technologies, adapting to unstructured and semi-structured data without the need for predefined templates. The technology owner is interested to work with Singapore companies in the maritime sector to testbed the technology and support activities on effective carbon footprint management. The team is also seeking co-development projects on the proprietary AI platform for automated document processing and data extraction across various industries.
High-Performance Lightweight PEM Fuel Cell Stack for Versatile Applications
With rising concerns over environmental pollution and energy shortages, it is crucial to explore alternative green energy sources. Hydrogen stands out as a promising option, especially its use in proton exchange membrane (PEM) fuel cells. PEM fuel cells offer high efficiency, durability, and pollution-free operation, making them ideal for transport applications and stationary on-site power generation. However, despite their advantages, PEM fuel cells face challenges, including scaling multi-stack systems for large applications, optimising the performance control systems to maintain efficiency, and improving affordability and long-term durability for widespread adoption. To address the challenges and meet high-power demands, the technology owner has designed a patented multi-stack PEM fuel cell system after more than a decade of iterative development. This highly optimized air-cooled system features patented innovations in stack design, optimised assembly processes, and an advanced performance boost control system. The system delivers 2-3 times higher energy density compared to lithium batteries and allows rapid refuelling in just a few minutes. These qualities make it ideal for applications where a lightweight, efficient, and clean energy source is essential, such as drones, telecommunications, and remote power supplies, as well as environments sensitive to air pollution. The technology owner is seeking collaboration with industrial partners, particularly companies interested in manufacturing fuel cells, developing fuel cell systems, creating customised fuel cell applications, or engaging in joint R&D for fuel cell system innovation.
Metal Alloy Formulation and Development
Materials play a crucial role in the development of metallic products, but traditional alloying methods face significant challenges due to rising costs and the limited supply of key materials, such as copper, which has experienced a price increase of over 60% in the past decade. Additionally, conventional melting processes, such as resistance heating, are often constrained by poor temperature control, uneven heating, and high energy consumption, leading to inconsistent alloy quality and increased production costs. Addressing these issues is essential for improving the economic viability and environmental sustainability of engineering projects. This technology introduces a novel approach that combines unconventional alloying concepts with induction melting to overcome the limitations of traditional methods. By employing multiple high-content alloying elements, this method enables the creation of alloys with unique and enhanced properties that go beyond what is possible with traditional single-element alloys. Induction melting results in uniform heating, reduced energy consumption, and enhanced alloy quality, significantly improving the production process. The technology is capable of developing specialized alloys, such as light metal alloys, while addressing the pain points of material and production costs and environmental sustainability. Specifically, the developed alloys offer microhardness of 95-100 Hv, tensile strength of 305-320 MPa, and an excellent strength-to-weight ratio, providing a competitive alternative to conventional materials like copper and brass. The technology owner seeks collaborations with industry players in appliance manufacturing, aerospace, automotive, construction, and electronics to co-develop and commercialize these advanced resistive heating applications. 
Artificial Intelligence-based Sport Performance & Optimization Tracker
This software is a cutting-edge artificial intelligence-based management solution, designed to transform the landscape of professional sports through advanced performance analytics and optimization. This versatile technology is a comprehensive system comprising three innovative modules: MONITOR, EVALUATE, and COACH, each tailored to address the pivotal challenges in sports management—athlete well-being, resource optimization, and tactical decision-making. The software is poised for application across a broad spectrum of sports, promising to equip professional teams with the tools necessary for sustaining peak performance, ensuring athlete health, and securing a competitive advantage. We are actively seeking partnerships with sports teams, technology firms, and academic institutions to further develop and commercialize this groundbreaking solution. AI-SPOT not only signifies a leap forward in sports management technology but also offers a scalable model for future advancements in athlete performance optimization. It introduces a paradigm shift in sports analytics by integrating advanced artificial intelligence to offer unprecedented insights into athlete management, performance optimization, and strategic decision-making. This technology sets a new benchmark over existing solutions with its innovative approach to athlete load monitoring, injury prediction, and match performance analysis, addressing the multifaceted needs of professional sports teams.
Sweat-Based Continuous Lactate Detection Wearable Solution
Lactate monitoring has become an essential tool for optimizing athletic performance by providing real-time insights into the body’s metabolic response during exercise. However, traditional lactate testing methods are invasive and often require laboratory equipment, limiting their practicality for continuous monitoring in everyday training scenarios. This new sweat-based wearable technology offers a non-invasive, real-time solution for continuous lactate detection, solving this challenge for athletes and coaches. By enabling real-time tracking of lactate levels through sweat, this technology helps fine-tune training intensity, prevent overtraining, and improve overall performance. Athletes and coaches can use this data to adjust training regimens, optimize recovery strategies, and refine race-day tactics, pushing performance limits while minimizing risks. The technology owner is seeking collaboration and licensing opportunities with:  Health and wellness product manufacturers,  Sports-related industry partners, including sports training facilities and equipment manufacturers.  This wearable solution addresses the critical needs of the sports and wellness industries, offering an innovative tool for enhancing athletic performance and supporting more precise, data-driven training programs.
Artificial Intelligence-assisted Gastrointestinal Abnormality Detection System (DeepGI)
The DeepGI system is a cutting-edge AI tool designed to help detecting images captured during endoscopic examinations. Utilizing deep learning models, it can detect abnormalities in both the colon and stomach with over 90% accuracy. This real- time alert system assists medical professionals in identifying polyps with the potential to develop into cancer (neoplastic) and those without such risk (hyperplastic) in the colon. Additionally, it can pinpoint areas in the stomach where precancerous conditions, known as Gastric Intestinal Metaplasia (GIM), may be present. DeepGI is a vendor-unlocked system, compatible with most endoscopic cameras.
Thin-Film Composite Hollow Fiber Membranes for Oxygen Enrichment
Oxygen enrichment membrane technology is emerging as a promising, cost-effective, and energy-efficient method for producing oxygen-enriched gas (OEG) with oxygen purities of 30-45%. Traditional oxygen production methods, such as cryogenic distillation and pressure swing adsorption, are often costly, energy-intensive, and complex, making them less suitable for applications requiring moderate oxygen enrichment. This innovative technology addresses these challenges through a thin-film composite (TFC) hollow fiber membrane that incorporates a novel use of polydimethylsiloxane (PDMS) as a selective layer on a polyethersulfone (PES) substrate. The PDMS selective layer is applied using a flow coating technique, which is both simple and scalable, allowing for consistent production of high-performance membranes. The technology was upscaled to commercial-sized membrane modules producing 15-53 Nm³/h of OEG with oxygen purities between 31-38%. The membrane system operates at ambient temperatures and pressures, offering significant energy savings and reduced operational costs compared to traditional methods. The benefits of this technology are substantial, including improved cost-effectiveness, enhanced energy efficiency, and flexibility in scalability, making it suitable for a wide range of industrial applications.  The technology owner is seeking collaboration with membrane manufacturers to further scale up this innovative technology, and with end-users who have a demand for oxygen-enriched gas with 30-40% O₂ purity.
A Novel Carbon Nanotube Synthesis Method to Capture and Utilise Carbon Dioxide
Faced with the increasing levels of carbon dioxide, carbon capture, utilisation, and storage (CCUS) technologies have garnered significant attention. However, as most CCUS technologies rely heavily on various forms of monetary support from governments and faced numerous technical and scalability challenges, most of the CCUS facilities developed are unable to achieve financial profitability or even achieve a net reduction of carbon dioxide (CO2) emissions. The technology proposed herein relates to an electrochemical-based CO2 reduction reaction process, which can directly capture and convert CO2 to carbon nanotubes (CNTs), a high-value material that exhibits unique electrical and thermal properties suited for applications in various sectors, including electronics, energy storage, sensors and medical uses. In contrast to synthesis methods that involve complex reactions and expensive catalysts, the proposed method uses a molten salt chemistry that can convert CO2 to cathodic solid carbon nanotubes (CNTs) via the electrochemical process. Although high reaction temperature (about 760 degC) is required, this method is highly controllable and uses cost-effective pure iron catalyst, producing high quality CNTs at a relatively high production rate. Based on preliminary process modeling and technoeconomic analysis, this technology has the potential to be completely CO2-negative without re-emission, is more scalable, and profitable with high quality CNT materials. The technology owner is seeking to collaborate with industry partners and research institutions for joint R&D to advance the lab scale technology to pilot or event industrial production scale, as well as to explore applications for the CNTs produced. Upon further development, the system has the potential to be integrated with existing carbon capture systems to improve their financial viability and achieve carbon negative objective.
Close menu