Sustainability

Agrifood

With only 1% of land available for food production, Singapore relies on imports for 90% of its food supply. To meet the goal of producing 30% of the nation's nutritional needs locally by 2030, enterprises can adopt innovative agrifood technologies. Technologies that enhance agri-inputs and resource efficiency for highly productive urban farming systems in agriculture and aquaculture, together with innovations in alternative proteins, food side stream valorisation and solutions to enhance food safety can pave the way for sustainable and resilient food systems, contributing to long-term food security for Singapore.

Discover IPI’s curated list of technologies and solutions, as we aim to strengthen Singapore's food security, ensuring resilience in the food supply chain while promoting sustainable and profitable agricultural practices.

A Distributed Ledger Technology Application to Manage Food Supply Chain
Food tracking and traceability systems can utilize Distributed Ledger Technology (DLT) and Internet-of-Thing (IoT) sensors to streamline the workflow of food supply chain management. Such a traceability system mitigates the complex business processes and speeds up the workflow of working through multiple business owners along the nodes in the value chain. This Technology Offer is a DLT application that can be used to manage the food supply chain. The technology aims to obtain transparency, ease of transactions and speed of delivery, synchronization, tracking and security. As an example, IoT sensors can be attached to livestock to obtain information about them from the source, and is uploaded to the ledger data of the node. When the livestock is shipped to the manufacturer, shipment tracking data can be uploaded. The transport is thus done with trackable ownership, possession and telemetry parameters such as location, temperature, humidity and activity. The manufacturer then processes the livestock, weighs the meat, packs and labels them. The label has a unique cryptographic QR code or NFC tag that links to the data citing the origins of the meat. The packaged meat is then shipped to the distributors, and eventually reaches the buyer. The final buyer can access a complete record of information and trust that the information is accurate and complete.
Extension of Crop Harvest Period Through Customised LED Light Recipes
The majority of the local indoor farmers grow crops that are harvested for their leaves. One way to increase the growth rate of such leafy greens is to provide a longer period of light. However, some of the crops grown, e.g., spinach, are long-day plants that flower when the light periods are longer than their critical day-length. While important to a plant’s life cycle, this vegetative to reproductive phase change is undesirable for farmers, not only because it shortens the harvest period hence reducing the yield, but also because it changes the taste profile. To tackle this problem, a light recipe that was able to suppress flowering was formulated. Plants grown under this light recipe showed a faster growth rate than those grown under flowering-suppressing short-day photoperiod. Moreover, they do not flower even when the light period has surpassed the critical day-length. Positive results were obtained when this light recipe was tested on spinach and arugula. This technology would work for other long-day crops, and it will be beneficial to indoor farmers who are interested to try it.
A Decentralized Urban Farming IoT System
This Internet of Things (IoT) software architecture addresses a decentralized framework to provide the ability to exchange data between IoT devices autonomously without any centralized server. In recent years, the development of IoT applications has become increasingly complex. Thus, this technology addresses the problem by providing the ability to simplify the streaming of data to the IoT platforms over the web. The IoT platform is designed to assist modern-day farmers in monitoring the entire farm seamlessly. It can be customized to suit each farm depending on the type of sensors, machine vision camera, cloud storage, etc. Equipped with detailed data tracking and analytics to provide the most accurate growth process from start to finish. This design can be customized for other applications. The technology owner is looking for partners and collaborators to further co-develop this technology in urban farming.