Sustainability Hub

Health and Well-Being

Sustainability is becoming an essential part of both everyday life and the healthcare sector, influencing how we live, care for ourselves, and manage resources to create a healthier and more resilient future. Singapore is embracing green healthcare innovations, where technology and sustainable living solutions converge to promote healthier lifestyles, preventive care, and the development of a robust, eco-conscious healthcare system. 

This curated selection of sustainable living and healthcare innovations addresses modern challenges and enhances quality of life. From digital health, including AI in healthcare, to personal care, wellness, to efficient resource management and green materials, these innovations open new opportunities for enterprises to develop products and services tailored for families, the silver generation, and eco-conscious individuals, promoting well-being and sustainable growth. 

The integration of digital health innovation and AI in healthcare is transforming how we approach both personal and preventive care. These technologies enable more efficient healthcare delivery, while aligning with sustainable living solutions, reducing resource consumption and promoting long-term wellness. By integrating technology into healthcare, Singapore is paving the way for a more sustainable, resilient, and health-conscious future.

Advanced Self-Assembly Hydrogel Drug Delivery Platform for Chronic Skin Conditions and Pharmaceutical APIs
This novel technology introduces a breakthrough self-assembly porous hydrogel platform that revolutionizes drug delivery, going far beyond the limitations of traditional static creams and non-porous emulsions. The unique porous hydrogel structure demonstrates an 85% increase in drug bioavailability through enhanced penetration and controlled release, compared to traditional formulations that create impermeable barriers. The innovative one-step drug delivery system achieves a 20-fold reduction in manufacturing costs by eliminating multiple complex steps typically required in conventional processes, such as vehicle manufacturing, formulation and purification. Through its distinctive porous architecture, this streamlined approach delivers enhanced therapeutic outcomes while maintaining production efficiency. Especially on eczema, this technology represents a breakthrough in treatment by addressing the multifactorial nature of the disease. Traditional eczema therapies typically target only one or two aspects of the condition, often leading to limited efficacy and undesirable side effects. In contrast, this delivery method enables the simultaneous modulation of several key pathological pathways. It specifically targets inflammation, oxidative stress, proteasome dysfunction, and ferroptosis while also enhancing skin barrier function—critical factors in both the onset and persistence of eczema. This potentially reduces flare-ups and improves overall skin health. This technology is applicable as an over-the-counter advanced topical formulation and as injectables. The technology provider is seeking the following collaborations: Co-development opportunities Patient centric non-profit organisations to support life-changing treatments. Dermatology focused clinics Formulation focused CRO/CDMO working on complex medicines Startup companies working on new modalities or novel API including oligo medicines AI/ML-driven drug discovery firms. Leverage predictive modeling to optimize key properties, such as porosity and drug loading ratios
Dilution Air Purification Systems (DAPS)
This technology represents an innovative approach to indoor air quality (IAQ) management, focusing on sustainability and energy efficiency. Leveraging the principle of dilution, outdoor airflow can be adjusted dynamically to balance energy consumption and air quality. The system uses a predefined control algorithm to determine the optimal mix of outdoor and recirculated air based on the concentration of particulate matter or carbon dioxide in the indoor environment. Users can customise the system's operation based on their IAQ requirements, ensuring efficient ventilation while minimising energy usage. This low-cost solution aims to tackle challenges associated with IAQ, energy efficiency, and sustainability that cannot be accomplished by traditional heating, ventilation, and air conditioning (HVAC) systems. Instead, integrating decentralised air purification technologies into building design and urban planning initiatives, indoor pollutants can be removed while minimising operational costs and environmental impact. City planners can now better prioritise IAQ and energy efficiency from the outset, ensuring that future developments contribute to healthier, more livable communities. Public health, well-being, environmental sustainability, and climate resilience can be strengthened. This technology is best suited for retrofitting air conditioning systems in small to medium-sized residential care facilities and commercial buildings.
Virtual Reality (VR) Cognitive Therapy & Rehabilitation Platform
Cognitive dysfunction and impairment are increasingly prevalent due to aging, neurological conditions, and lifestyle-related factors. These issues can significantly affect memory, attention, and mental well-being, reducing quality of life and increasing long-term healthcare burdens. Traditional interventions—such as medication, physiotherapy, and psychotherapy—often face limitations in engagement, adaptability, and measurable outcomes. This virtual reality + artificial intelligence (VR+AI) Cognitive Therapy & Rehabilitation Platform offers an innovative, science-backed alternative that enhances the way cognitive impairments are managed. Through immersive, interactive virtual reality experiences, patients engage in targeted exercises that stimulate brain functions in a dynamic, gamified environment. The platform is designed to improve cognitive function, memory, and emotional health by encouraging active participation and consistent therapy adherence. Validated in clinical settings, this technology enables more engaging and effective cognitive rehabilitation while reducing dependency on one-on-one therapist-led sessions. It presents significant opportunities for collaborative development and clinical research in the fields of neurology, mental health, and geriatric care. Collaboration partners may explore joint clinical trials, co-creation of specialized therapy modules, and integration with broader digital health ecosystems to extend the platform’s reach and impact. Different forms of solution catered for hospital or home use are available.
AI Smart Spectacles - Cognitive and Emotional Analysis for Mental Health Management
The AI-Enhanced Smart Spectacles integrate camera-based eye tracking, photoplethysmography (PPG) sensors, and electroencephalography (EEG) sensors into a lightweight and comfortable spectacle frame. This multi-modal data collection system enables real-time monitoring of eye movement, brain activity, and heart rate, offering deep insights into a user's cognitive state, stress levels, and overall neurological health.   Using AI-driven analytics, the system can detect early signs of stress-related vision problems, cognitive fatigue, and mental health disorders, providing preventive interventions before symptoms manifest. A key focus is helping teenagers avoid vision fatigue and prevent anxiety and depression by offering early detection and proactive recommendations.   In addition, it offers a multi-model approach with a health assessment machine,  a stationary diagnostic unit designed for in-depth cognitive and emotional health evaluations. This machine leverages AI-driven analytics to integrate facial expression recognition, pulse waveform analysis, eye movement tracking, and neural activity assessment, offering high-precision mental and neurological health diagnostics. It serves as an advanced assessment tool in clinics, schools, and corporate wellness programs, allowing detailed stress profiling and personalized intervention recommendations.   This non-invasive, wearable AI solution is designed for healthcare, education, and corporate wellness applications, ensuring continuous well-being monitoring for users in their daily lives. The technology owner is looking for potential licensing and use-case collaborations in Singapore. 
Compact Spectrometry-Based Electronic Nose for Odour Detection
With increasing discoveries of new pollutants being detrimental to human health and the environment, there have been an increasing scrutiny of air pollution, industrial emission and air quality through tighter government regulations. With the increasing importance to detect different combination of analyte concentrations within an area, there is a growing demand for electronic olfactory system. Laboratory multi-analyte analysis method, like gas chromatography and mass spectrometry (GC/MS), provide high accuracy and selectivity but is time consuming, complex and not portable. Comparatively, industrial gas sensors, like micro-electromechanical systems (MEMS), are portable and simple but lack the selectivity of chemical substances and do not operate in real-time. The technology owner has leveraged on Field Asymmetric Ion Mobility Spectrometry (FAIMS) with a proprietary odour analysis system built on extensive experimental data to develop a compact, lightweight spectrometer for real-time multi-analyte analysis.  While this system may not fully match the performance of laboratory-grade mass spectrometry, it offers higher accuracy and selectivity than industrial gas sensors, enabling continuous, non-invasive analysis on the go. Notably, it excels in ammonia detection by achieving highly sensitive measurements ranging from sub-ppb to several hundred ppb. The technology owner is currently seeking industrial collaborators looking to explore digital olfaction devices for multi-analyte analysis application, particularly for ammonia-based detection, which leverages on the technology’s high selectivity and sensitivity.
Advanced Photocatalytic Technology For Air Purification And Sustainable Applications
Traditional air purification methods rely on consumable filters (HEPA, carbon) that require frequent replacement or UV-C systems that consume high energy, leading to high maintenance costs and inefficiencies in long-term air quality management. Poor indoor and outdoor air quality is a major health and environmental concern, contributing to respiratory diseases, allergies, and long-term conditions i.e asthma and cardiovascular issues. This photocatalytic air purification technology offers a maintenance-free, energy-efficient solution for sustainable air quality management by integrating porous ceramic nanolayers with LED activation to effectively remove VOCs, odors, pathogens (viruses, bacteria, fungal spores), and harmful gaseous pollutants like NOx and SO₂. Unlike conventional HEPA or carbon filters that require frequent replacement or UV-C systems that consume high energy, this innovation eliminates the need for consumables and intensive maintenance, reducing operational costs while delivering up to 99.99% pollutant removal efficiency. Designed for manufacturers of HVAC systems, air purifiers, and air quality solutions across healthcare, food processing, agriculture, automotive, and residential industries, this technology meets the growing demand for sustainable, cost-effective, and health-conscious solutions. Its scalability and adaptability make it an ideal choice for industries prioritizing clean air, regulatory compliance, and environmental responsibility, providing a future-proof alternative to traditional air purification methods. Technology owner is looking for collaborations with device manufacturers (HVAC, air purifiers, home appliances), agricultural and food storage facilities, healthcare institutions, industrial and commercial building developers for R&D, licensing, piloting or licensing.
Microstrip Line Based Non-Invasive Glucose Meter for Continuous Glucose Monitoring (CGM)
The global diabetes prevalence is estimated to be 9.3% in 2019 and is expected to rise to 10.9% by 2045 [1]. Although there is no cure for diabetes, regular blood glucose monitoring and appropriate medication can control the symptoms. Electrochemical glucose meters are accepted as being the most accurate and reliable glucose measurement devices. However, they are invasive and patients need to take three to six measurements daily. As a result, their nervous system may be damaged due to long-term usage. There are several proposed approaches for non-invasive glucose monitoring, mainly based on optical, transdermal and electrochemical techniques. Due to the nature of these technologies, the proposed approaches are not suitable for continuous monitoring. This technology is a wearable sensor that makes use of transmission line implemented using a microstrip working at microwave frequencies to measure blood glucose non-invasively and continuously. The technology owner is looking for licensees to commercialise this technology. [1] Saeedi, P., et al. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045. Diabetes Research and Clinical Practice, 157, 107843.
Hybrid Photocatalytic Film with Enhanced Antibacterial and Antiviral Properties
In recent years, particularly after the pandemic, the demand for effective antibacterial and antiviral solutions has surged. These solutions are increasingly utilized in diverse settings, including residential spaces, educational institutions, public areas, and transportation systems. Thus, it is anticipated that the demand for antimicrobial and antiviral products will continue to grow. Despite their utility, traditional antimicrobial and antiviral technologies have notable limitations. Copper, for example, offers a strong immediate antimicrobial effect but suffers from reduced durability due to oxidation and is effective only within a limited range. Silver ions are more durable and applicable to a wider range of surfaces but lack the immediate efficacy of copper. Photocatalysts, while more durable than both copper and silver, are heavily dependent on the availability of a suitable light source. These challenges underscore the need for a technology that is fast-acting, durable, and versatile across various environments. To address these challenges, the technology owner has developed a hybrid photocatalytic film with enhanced antibacterial and antiviral properties. This solution combines the photocatalytic activity of copper suboxide and titanium dioxide with visible light responsiveness to effectively denature membrane proteins on virus surfaces, thereby reducing their infectivity.  Additionally, the technology incorporates a film-based manufacturing process, providing a more efficient alternative to traditional paint-based approaches. The technology owner is actively seeking R&D collaborations and licensing opportunities with industry partners interested in implementing this film in various applications.
Portable Handheld Device for Glaucoma Screening and Diagnosis
Glaucoma stands as the leading cause of irreversible blindness worldwide after cataract. It is expected to affect 111.8 million people by 2040 [1], exacerbates by the aging population globally. Despite its prevalence, 50% of people with glaucoma are undiagnosed. Current methods of imaging the iridocorneal angle for glaucoma diagnosis are severely limited by cost and utility, with traditional gonioscopy being the main method. Gonioscopy is a subjective procedure and the method causes discomfort in patients. This technology is a compact, handheld device specifically designed to enhance the accessibility of glaucoma diagnosis. With its portable and user-friendly design, it enables the evaluation and automated diagnosis of glaucoma angle, making it suitable for use by non-specialists. The device is complemented by advanced image processing and management software, which facilitates precise and automated angle evaluation, ensuring accurate and efficient diagnostics. The technology owner seeks collaboration with partners interested in development and licensing opportunities. Medical device manufacturers, technology firms, or individuals passionate about advancing innovative healthcare solutions are invited to collaborate or license the technology. Partnerships can focus on optimizing the design, scaling production, and facilitating successful market entry. [1] Tham, Y., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C. (2014). Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology, 121(11), 2081–2090. https://doi.org/10.1016/j.ophtha.2014.05.013
Close menu