Sustainability

Agrifood

With only 1% of land available for food production, Singapore relies on imports for 90% of its food supply. To meet the goal of producing 30% of the nation's nutritional needs locally by 2030, enterprises can adopt innovative agrifood technologies. Technologies that enhance agri-inputs and resource efficiency for highly productive urban farming systems in agriculture and aquaculture, together with innovations in alternative proteins, food side stream valorisation and solutions to enhance food safety can pave the way for sustainable and resilient food systems, contributing to long-term food security for Singapore.

Discover IPI’s curated list of technologies and solutions, as we aim to strengthen Singapore's food security, ensuring resilience in the food supply chain while promoting sustainable and profitable agricultural practices.

Freshness Preservatives for Vegetables and Flowers
Stomata, tiny pores on the surface of leaves, are opened or closed under the control of a pair of guard cells for gas exchange with the atmosphere. Through these pores, plants uptake the carbon dioxide necessary for photosynthesis and release water by transpiration, which enhances the uptake of nutrients from the roots. Therefore, regulation of stomatal openings is essential for plant growth and survival in response to various environmental conditions.  Improper regulation or dysfunction of stomata can lead to drying out and wilting of vegetables and flowers, resulting in loss of freshness during transportation and hence, wastages. Following a study to improve plants’ drying tolerance and productivity by controlling the opening and closing of plant pores, the research team has identified natural compounds that have the effect of closing the stomata to preserve freshness and successfully developed more potent analogs.  The research team is looking for companies to partner in joint development of applications such as sprays and volatile sheets as freshness retention agents for vegetables and flowers.
Upcycled Nutritious High Protein Powder From Fish
This protein powder is packed with high protein and calcium. Rich in umami taste, this protein powder is an effective natural flavour enhancer, suitable to be incorporated into any kind of foods for more nutritious meals. The protein powder is sustainably sourced and produced from minced fish by-products from the surimi process.  The technology is at pilot scale and is ready for commercial scale up. With an environmentally friendly technology process, the powder is promoting zero waste strategies and SDGs No. 2, 3 ,11, 12 and 13. The technology provider is seeking for collaborators to co-develop and apply the powder into various other products.
Cross Platform Web-Based Remote Monitoring and Control Solution
This software platform is a revolutionary remote monitoring and control system designed to address several critical challenges faced by various industries. Problem Solved:  Centralized Monitoring: Many customers struggle with the lack of a unified platform for real-time monitoring of devices, leading to reliance on manual interventions and multiple scattered tools. The software consolidates the management of IoT devices across diverse locations into a single interface, streamlining operations.                        Data Analysis Challenges: Businesses often find it difficult to extract meaningful insights from collected data due to time-consuming manual analysis. The software automates this process, enabling users to interpret trends and identify potential issues effortlessly.  Data Visualization and Alerts: Users frequently lack intuitive interfaces for visualizing device data or receiving timely notifications. The software provides customizable dashboards and configurable alerts, allowing proactive management of potential problems. Target Market: The software platform caters to a wide range of sectors including facility management (monitoring HVAC, lighting, energy consumption), industrial operations (predictive maintenance), agriculture (environmental monitoring), and smart cities (traffic flow and air quality). Market Need: The technology addresses a significant gap in the marketplace by offering an integrated solution that enhances efficiency, reduces operational costs, and improves decision-making through advanced data visualization and automation. This software positions as a valuable asset for organizations seeking to optimize their monitoring processes and resource management. The technology owner is seeking collaboration with system integrators, facility management teams, IoT companies, and startups.
Innovative Nutraceutical From Coffee Cherries
Coffee cherry is the fruit that encompasses the coffee beans. It is usually discarded after the extraction of coffee beans. The team has deployed advanced scientific methods to develop a nutraceutical product derived from coffee cherry. The technology is a sustainable process where minimal byproduct is produced and greenhouse being gas emitted. Clinically tested to be food safe and with high bio-efficacy, the nutraceutical being rich in antioxidants, promotes healthy high-density lipoprotein (HDL) cholesterol, supports cardiovascular health and reduces the risk of heart disease, stroke, and metabolic disorders. Additionally, it improves blood circulation, reduces oxidative stress, and enhances overall metabolic function. This innovation not only promotes human health but also contributes to environmental sustainability, making it a powerful solution for health conscious consumers coupled with ecofriendly production. The technology provider would like to license the technology to collaborate with food and beverage manufacturers and to work with institute of higher learning to research on other bioactive compounds found in coffee cherries.
Low-Cost Cultivation of Purple Phototrophic Bacteria (PPB) For Plant Growth Support
Side stream valorisation in sectors such as food and beverage manufacturing has gained substantial interest over the years. The waste streams, in particularly the liquid has high amount of nutrients and organics, in which suitable bioprocesses can be deployed to convert them into value-added products. One product of interest is the purple phototrophic bacteria (PPB), a metabolically diverse group of proteobacteria that contains pigments bacteriochlorophyll a and b. Attributed to its unique versatile metabolic pathways, PPB can be used as powerful pollutant removal in different types of wastewater treatments, under stressful conditions. Its light utilization process and hormone secreting properties also made PPB a good bio-fertilizer and bio-stimulant for plant growth.  This proposed PPB cultivation technology in photobioreactor (PBR) system has greater treatment efficiency and higher biomass conversion rate than conventional open pond systems. Biomass generated from this cultivation technology demonstrated its ability to enhance essential nutrients in soil and supply key plant hormones that aid in plant growth. This novel application of PPB can be adopted in the agriculture industry, in the effort to develop more eco-friendly agricultural inputs.  The technology provider is seeking for collaborators to test bed the technology to license the technology.
Eco-friendly Coating for Preservation of Tropical Fruits
Globally, the post-harvest loss of tropical fruits due to short shelf life is estimated to be around 30-50% of total production. This translates to approximately 30 million tons of fruit wasted each year. The economic cost is substantial, amounting to billions of dollars annually, affecting producers, retailers, and consumers due to reduced availability and increased prices. Proliferation of fungal and bacterial population further adversely impact the shelf life and fruit health. Our innovation offers tailored, edible coating using regulatory approved ingredients specific to the fruit family and microbiomes observed in the farms. Tests conducted in labs and farms over the past two years have provided positive results for tropical fruits such as mango, avocado and papaya in doubling shelf life. This solution has multiple benefits to the stakeholders in the industry value chain. The farmer and aggregator can sell with better assurance to wider export markets and also charge a premium for fresher, tastier and longer lasting fruits. This also provides more time for retailers to sell the produce and to reduce dependency on cold storage and costly supply chain management. This innovation contributes significantly towards better food security and sustainability goals. The technology provider is seeking to conduct further trial with farmers, aggregators in Asia to enhance their solution.
Nutritious Plant-based Abalone
The plant-based abalone is designed and prepared with mung beans, which are rich in protein, but the mung bean protein is often treated as a side stream in the industry. The plant-based abalone contains protein content comparable to that of real abalone. It also contains enhanced nutrients such as essential fatty acids which can potentially play a key role in heart health, cancer prevention, cognitive function, skin health, and obesity prevention. In addition, when cooked, this plant-based abalone presents physical properties like the real abalone, at a fraction of the cost. The technology provider is working on larger scale trials to develop optimal methods for central kitchen operations and looking to collaborate with the food industry on R&D and also to license the technology.
Software and AI To Digitize and Automate Seafood Manufacturing and Supply Chains
A smart manufacturing and supply chain platform has been developed, enabling seafood processors to automate and digitize their production, quality control, costing, traceability, cold chain, and inventory workflows using tablet computers, sensors, and IoT devices in real-time on the factory floor. This software is a “low-code” web app that can be easily configured for both simple and complex workflows, suitable for small or large production facilities, and adaptable to the wide variety of seafood processes, including live shellfish, fresh and frozen fish, smokehouses, and industrial-scale canneries. The workflow platform includes advanced modules for IoT hardware integration, artificial intelligence, advanced analytics and reporting, a wireless cold-chain sensor, a consumer tracing app, and computer vision for automated inspection. Generative AI is also integrated into the platform, allowing users to “talk to their data” and upload documents to train the large language model. The platform provides value to customers in three core areas: First, the software and AI reduce labor costs by making data collection, management, and reporting more efficient. Second, the software enables real-time process and inventory control, replacing outdated analog paper record-keeping. Third, the software reduces data errors and strengthens traceability, improving compliance with third-party certifications and food safety regulations. Additionally, it includes AI algorithms for yield prediction, anomaly detection, demand forecasting, and drain weight prediction in the fish canning sector.
Wavelength-Selective Organic Solar Cell for Greenhouse
The development of next-generation greenhouses in agriculture is driving a growing demand for innovative systems that can address both energy and food challenges simultaneously. Currently, agriculture heavily relies on fossil fuels, particularly heavy oil, as its primary energy source, new technologies must be explored to significantly reduce greenhouse gas emissions, such as carbon dioxide. Ensuring a stable food supply is crucial for increasing self-sufficiency rates, but the installation of traditional silicon solar cells has presented challenges due to shading effects, leading to reduced crop yields. Consequently, the absence of suitable solar cell technology for greenhouses poses critical problems for both power generation and food supply. Under this situation, green-light wavelength-selective organic solar cells (OSCs) have been developed. In this system, transmitted blue and red light can be effectively used to promote plant growth, while absorbed green light can be effectively utilized as a source of electricity for greenhouses. In addition, near-infrared wavelength-selective OSCs have been developed, which can use the near-infrared light to generate electricity while lowering the temperature inside the greenhouses. This wavelength-selective OSCs can be installed on the entire roof of greenhouses due to the advantages of light weight, flexible, and large area. This technology enables efficient utilization of solar energy for both power generation and agriculture.