Sustainability

Agrifood

With only 1% of land available for food production, Singapore relies on imports for 90% of its food supply. To meet the goal of producing 30% of the nation's nutritional needs locally by 2030, Singapore enterprises must embrace agrifood tech innovation. Technologies that enhance agri-inputs and resource efficiency for highly productive urban farming systems in agriculture and aquaculture, together with innovations in alternative proteins, food side stream valorisation and solutions to enhance food safety can pave the way for sustainable and resilient food systems, contributing to long-term food security for Singapore. 

Through the integration of agrifood tech innovation in Singapore, businesses can optimise processes and reduce waste, driving the shift towards a more sustainable food ecosystem. By focusing on food waste valorisation and other transformative agrifood technologies, Singapore can unlock new opportunities in resource efficiency and food production.

Discover IPI’s curated list of agrifood tech solutions, including food waste valorisation, as we aim to strengthen Singapore's food security, ensuring resilience in the food supply chain while promoting sustainable and profitable agricultural practices.  

Harnessing Blowflies for Sustainable Solutions
Blowflies are insects often used for scientific research in fields such as forensics, veterinary science, ecology, and biology. Scientists study them at different stages of their lives, including maggots and adult blowflies.This technology relates to a fully operational and scalable multi-species insectary (Arthropod Containment Level 2) which focuses on harnessing the potential of non-medical blowflies for agricultural and waste management sectors. Firstly, blowfly maggots can be produced at scale to act as biodigesters to break down and convert agri-food waste or side streams to valuable blowfly insect protein. With additional processing, bioactive compounds can be extracted from these insect proteins with diverse applications in medicine and industry. When maggots mature into blowflies, they can be deployed for all-year-round insect pollination instead of bees. This can be conducted in controlled environments, including Indoor Vertical Farms, Greenhouses, and Polytunnels. This application has been validated with state-of-the-art UV lighting technology where blowflies are adept at locating flowers and conducting crucial pollination activities. The technology provider is actively seeking collaborative partnerships with stakeholders from the agriculture sector to enhance crop yields for farmers, while also aiming to collaborate with the waste management industry in order to minimize waste generation and transform it into valuable products through recycling.
Proprietary Tech To Create Low Glycaemic Index Food & Beverage Applications
Diabetes is a prevalent and growing health problem worldwide, affecting 1 in 10 people, with 90% of cases being type 2 diabetes. Congenital diabetes also affects 1 in 6 live births. In the next 20 years, diabetes is projected to increase by 46%. More than half a billion people are affected globally, 400,000 of them are in Singapore and if nothing is done by 2050, there will be one million diabetics patients in Singapore.   The company offers two technical solutions in form of a blended powder format: 1) Low Glycaemic Index (GI) and 2) Low Glycaemic Index (GI) with added protein.   The blend is plant-based, a source of protein, high in dietary fibre and replaces sugar from 20% to 100% in recipes across various food and beverage applications, it is versatile, high solubility, no alternation to original taste.   The solution is primarily targeted at Food Service sectors operators and manufacturers who seeks to penetrate the reduced sugar food & beverage market. 
Converting Seafood Sidestreams Into Nutritious Foods
Asia accounts for approximately 70% of the world’s seafood consumption, around 69.6 million metric tons. This is more than twice the total amount consumed by the rest of the world.* Commercially, about 30% of the seafood is not consumed, from bones to offals, to skin/shell/scales. These food loss and waste potentially impose environmental and socioeconomic issues.  The technology provider has developed a green chemical process converting seafood sidestreams into food products that are not only high value but also nutritious, addressing Singapore’s demand to increase production of nutrient dense foods. In addition, this method is efficient and cost effective as it requires basic equipment. The technology provider is looking for R&D collaborators and for test-bedding especially with industries who are producing aquaculture food with high nutritional value and interested to utilise their sidestreams more sustainably. * FAO 2018
Temperature Regulated and Modular Rooftop Greenhouse Farming
Singapore is currently only producing 13% of its vegetable consumption. With little farming land available, Singapore relies heavily on imports from other countries. Due to increasing focus on food security, the alternative to solve land scarcity problem is to build greenhouses on concrete rooftop. Although concrete rooftop greenhouse are able to keep pests out, there is a signifcant heating problem which severely inhibits the growth of the vegetables. Therefore, there is a need for a rooftop greenhouse that is able to actively cool itself to avoid such problem. This technology offer is a modular rooftop greenhouse farming system (hydroponics) capable of producing vegetables on concrete roofs to meet the local demand while reducing over-reliance on imports. The design of the greenhouse farming system enables cooling and does not heat up, thus allowing the growth of pest-free vegetables. The system is approximately the size of a typical carpark lot (2.5 x 5 m). The production rate is 30 kg per month (2.5 x 5 m size) and requires minimal human intervention. The technology offer comprises both the farming system and its operation know-how. The modular rooftop greenhouse farming system can be set-up within 3 days or scaled-up when required with guaranteed vegetable growth. The break-even cost of one greenhouse is about 3 years. The technology owner is seeking to out-license their technology.
Optimised Nutrient Formulation for Improving Crop Yield
Different plant species have different nutrient requirements. The current practice of urban farming uses a generic hydroponic nutrient solution that is suitable to most plant types, and a crude sensing system that only measures total ion content in the solution. This approach often results in nutrients deficiency and/or overloading and hence requires consistently monitoring. Overloading of nutrients not only increases the input costs, it also results in greater quantities of contamination in effluent to be disposed after harvest.  A targeted hydroponic nutrient solution reduces the need to periodically adjust the nutrient. The technology provider has studied and formulated different nutrient recipes that had shown improved yield compared to commercial products. This ensures the best growth for each crop type. It also reduces common problem stemming from imbalanced nutrient, e.g. leaf chlorosis due to nutrient deficiency. All these translate to a better yield and a more marketable produce for the farmers. Formulations developed include Mizuna, Kale, Lettuce, Mustard, Kalian, and Caixin. The technology provider is seeking for licensing partners from the agriculture industry.
Rapid Screening of Heavy Metals in Food/Feed Powders
The presence of heavy metals in food or feed powders involves contamination of the food chain and potential harm to public health, as such, rapid detection is a time-critical issue. The uncertainty about food safety caused by the possible presence of heavy metals is of concern to consumers and regulatory authorities and this is typically addressed by increasing the testing frequency of food or feed samples. However, existing testing methods are often time-consuming and require highly skilled laboratory personnel to perform the testing. This technology employs spectroscopic imaging methods and machine learning techiniques to rapidly detect heavy metals in food or feed samples. The machine learning model can perform a multi-class differentiation of the various heavy metals based on spectroscopic measurements. It is also able to predict the concentration of heavy metals present in food or feed powders using spectroscopic measurements. Minimal sample preparation is required for this method, allowing for the rapid screening of food or feed powder samples. The technology owner is interested in collaboration with companies working with food powders, with an interest in heavy metal content within food powders.   
Maximising Cell Cultivation With Low Cost 3D Scaffolding
The current clean meat technologies grow lab meat with conventional 2D cell culture. However, the conventional cell culture technique has an overall low yield of cells, as the cells are restricted to growth on surface areas.  A new 3D scaffolding method has been developed to overcome this problem with the use of microcarrier beads that provide cells with additional surface area to attach onto and proliferate. The microcarrier beads are suspended in the cell culture thus maximizing the 3D volume of the cell culture, leading to an increased yield. A microcarrier type has been identified to yield the highest number of porcine cells. The conditions of the cell culturing process have been optimised to improve the cell viability in a 3D environment Companies interested in cell-cultured meat development could consider using this method to grow cell-cultured meat at a larger scale with a potentially lower cost of production. The technology developer is seeking companies that are keen to scale up lab-grown meat applications. 
Wavelength-selective Solar Photovoltaic System (WSPV) For Urban Rooftop Farming
This technology offer helps to address the problems of global warming, food security crisis and energy crisis. With the increase in human population and rapid urbanisation, the change in weather patterns and increase in food demand has been inevitable. One of the major concerns faced in Singapore, due to global warming, is the urban heat island effect. This occurs when urban areas in cities have a higher air, surface and soil temperature than rural areas. Initiatives for high-rise greenery has been put in place to help solve the problem. However, there has been problems with limited space and high maintenance cost for these greeneries. Rooftop hydroponics farming is a possible solution to offset the running costs of rooftop greeneries or even generate profits for rooftop greeneries as it produces fresh produce, while simultaneously reducing the urban heat island effect. The reduction in urban heat island is due to a combination of green and blue body acting as a thermal buffer and contributing to the building sustainability (due to reducing in cooling costs). This initiative addresses the constraints of limited land, as solar energy generators require large areas for photovoltaic panels to be laid. This technology offer aims to provide an integrated solution to this economic challenge for environmentally sustainable urban planning. This Technology Offer is a luminescent solar concentrator that enables both power generation by photovoltaic modules, as well as efficient urban rooftop farming.
A Distributed Ledger Technology Application to Manage Food Supply Chain
Food tracking and traceability systems can utilize Distributed Ledger Technology (DLT) and Internet-of-Thing (IoT) sensors to streamline the workflow of food supply chain management. Such a traceability system mitigates the complex business processes and speeds up the workflow of working through multiple business owners along the nodes in the value chain. This Technology Offer is a DLT application that can be used to manage the food supply chain. The technology aims to obtain transparency, ease of transactions and speed of delivery, synchronization, tracking and security. As an example, IoT sensors can be attached to livestock to obtain information about them from the source, and is uploaded to the ledger data of the node. When the livestock is shipped to the manufacturer, shipment tracking data can be uploaded. The transport is thus done with trackable ownership, possession and telemetry parameters such as location, temperature, humidity and activity. The manufacturer then processes the livestock, weighs the meat, packs and labels them. The label has a unique cryptographic QR code or NFC tag that links to the data citing the origins of the meat. The packaged meat is then shipped to the distributors, and eventually reaches the buyer. The final buyer can access a complete record of information and trust that the information is accurate and complete.