innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

AI-Based Early Intrusion Detection for Industrial Control System Communications
The trend for embracing industrial digitalisation and automation is increasing due to enhancement in productivity and operational efficiency it brings. However, as industries increasingly rely on more interconnected systems, the potential risks associated with cyber-attacks and system anomalies have grown significantly. With no method to monitor, verify and neutralise these digital attacks, this makes them more vulnerable which can potentially cripple their critical infrastructures. The technology owner has developed a technology solution that leverages on advanced AI-driven technology to provide a robust defence mechanism, ensuring seamless and secure interactions between Information Technology (IT) and Operational Technology (OT) layers. Through the use of their proprietary AI algorithm, it is able to detect and neutralise anomalous network packets with the ability to incrementally learn in real-time. This not only results in preventing potential damage to critical industrial systems but also ensures continuity in production processes, thereby avoiding costly downtime and maintaining productivity. This technology solution helps businesses meet stringent cybersecurity compliance requirements, providing long-term cost-saving and peace of mind. The technology owner is currently undergoing pilot tests for critical water infrastructures, locally and overseas, by integrating this technology solution to existing industrial IT-OT control system. The technology owner is seeking industrial partners who are either open to explore integration into their critical infrastructure enhance their IT-OT cybersecurity or open to explore licensing opportunities. The technology solution to detect and neutralise anomalous network packets have the following capabilities: Real-Time Network Packet Decoding: Decodes network packets as they traverse the IT-OT layers, including PLCs, workstations, SCADA systems, and HMIs, ensuring that only legitimate data reaches its destination. AI-Driven Anomaly Detection: Utilizes advanced artificial intelligence to continuously monitor and analyze network packets flowing through IT-OT interaction layers, identifying any anomalies in real-time. Threat Detection and Intention Extraction: Detects potential cyber threats and extracts the attacker's intent from the anomalous packets, providing critical insights into the nature of the attack. Automated Threat Response: Automatically reports detected threats to plant management and discards malicious packets, preventing them from causing operational disruptions or pushing the plant into an anomalous state. Seamless Integration: Designed for easy integration into existing IT-OT infrastructures, the solution ensures minimal disruption during deployment and compatibility with a wide range of industrial systems. High Reliability and Precision: Offers high accuracy in anomaly detection with minimal false positives, ensuring that the critical infrastructure operates smoothly without unnecessary interruptions. Scalable Architecture: The solution can be scaled to fit different industrial environments, from small facilities to large, complex operations, ensuring robust security across various scales of deployment. The technology solution’s AI-driven anomaly detection and real-time monitoring capabilities make it an essential solution for safeguarding the interaction layers between IT and OT systems. Its ability to detect and neutralize threats before they impact industrial operations ensures the continued security and efficiency of critical infrastructure. This technology is particularly valuable in environments where seamless IT-OT integration and protection against cyber threats are crucial. The applications of the IT-OT Bridge include, but are not limited to: Energy and Utilities: Power plants, electrical grids, water treatment facilities, renewable energy systems. Oil and Gas: Drilling operations, refining processes, pipeline monitoring, distribution networks. Transportation and Logistics: Automated control systems for railways, ports, warehouses, and supply chain management. Chemical Processing: Reaction monitoring, safety systems, quality control in chemical production. Manufacturing: Production lines, assembly processes, quality control systems. The technology solution’s AI-driven ability to proactively detect and neutralise anomalous network packets before they can cause harm in real-time helps enhance the cybersecurity of IT-OT communication within any critical infrastructures. The proprietary AI algorithm enables incremental learning to further improve its high accuracy and precision with minimal false positives. With its seamless integration and scalable architecture, the deployment time required is reduced and can be scaled to fit various industrial environment, ensuring a reliable protection against potential cyber threat and ensuring the continuity and safety of any essential industrial operations. Infocomm, Security & Privacy, Networks & Communications, Artificial Intelligence
A Multianalyte Metabolite Sensing Bandage
Singapore is ranked second highest among developed countries for incidence of diabetes. Previously, glucose monitoring is performed through a needle prick test or capillary blood glucose test. Compared with blood testing, sweat testing offers the advantages of non-invasiveness, portability, and persistence. Analysis and detection of biomarkers in sweat can assist in the prevention, diagnosis, and especially monitoring of chronic diseases.  Wearable devices have been extensively explored in the last decade owing to their lightweight, bendability, stretchability, and ease of integration with human interfaces. Optical wearables are also known for their potential capability to perform remote sensing and detection of multi-parameters at the same time. Despite the rapid advancement in wearable optical sensors, one of the greatest challenges is the capability of multiplexed detection or multifunctionality on a single device. To overcome this limitation, micro-lasers offer unique advantages in terms of signal amplification and narrow linewidth. Strong light interactions between optical microcavities and biomolecules would therefore lead to distinctive lasing signals for sensing. However, there are no laser emitting based device which have been invented for physiological and clinical sensing applications on human before. This technology has developed the first laser emitting bandage for multiplexed detection through a non-invasive wearable laser device. The smart bandage can quickly detect metabolites in 2 minutes through sweat secreted on human skin. The technology owner is seeking collaborations with medical institutions to extend this technology to patients health monitoring or daily monitoring. This new technology is formed by embedding tiny laser sensors in a hydrogel patch. The bandage uses laser light emitted from the bandage to identify tiny fluctuations of glucose level in sweat and can offer a record low Limit of Detection (LOD). In addition, the device can detect multiple metabolites at the same time to help monitor health conditions more precisely. To obtain an active microlaser with biochemical sensing functions, a wearable thin film laser is developed by encapsulating cholesteric liquid crystal (CLC) droplets in a flexible hydrogel thin film. Each single CLC microdroplet serves as a WGM microresonator. The three-dimensional cross-linked hydrophilic polymer serves as the adhesive layer to allow small molecules to penetrate from human tissue to the surface of droplet laser resonators. Due to the high-quality factor of the whispering gallery mode (WGM) resonator, subtle changes in the liquid crystal droplets will be amplified, resulting in a wavelength shift in the laser emission spectra, which can then be applied for sensing and monitoring metabolite. Using a laser emitting technology, the flexible bandage is able to perform multianalyte sensing and detection of metabolites.  The market potential is substantial, with hundreds of millions of patients requiring daily glucose monitoring. Additionally, the device can be adapted to track multiple metabolites, further broadening its market scope. There are two primary factors that contribute to the appeal of this device. Firstly, it enables monitoring through sweat, eliminating the need for blood samples. Secondly, the technology is both cost-effective and affordable. Previous studies have investigated the possibility of using surface-enhanced Raman scattering, photonic crystals-based structural color, and polarized microscope for sweat sensing. This technology offers several advantages:  1. This device fulfils the required dynamic range, envisioned to be applied to daily health monitoring for low-cost and disposable usage. 2. This device is able to detect any desired target metabolites by simply modifying the CLC microdroplets. By embedding modified CLC microdroplets within a PAAm hydrogel film, both flexibility and physiological sensing capabilities on human skin was achieved, including lactate, glucose, and urea. The testing results has successfully attained remarkable levels of sensitivity and minimal limits of lactate, glucose, and urea detection. 3. This platform is very versatile. By altering the components of the droplets or the hydrogel substrate itself, the structure of microdroplets in the hydrogel film can be adjusted to any lasing wavelengths. Glucose Sensor, Micro Laser, Liquid Crystal, Hydrogel Materials, Nano Materials, Electronics, Lasers, Optics & Photonics, Healthcare, Diagnostics, Medical Devices
Ultra-Low Frequency Technology: Reducing Oxidative Stress and Enhancing Metabolic Functions
Water plays a vital role in various biological and industrial processes, but its effectiveness can be enhanced by modifying its molecular structure. This Ultra-Low Frequency (ULF) platform technology leverages ULF electromagnetic waves to alter the properties of water, aiming to improve its performance in specific applications. By applying low-frequency electromagnetic fields, this technology has been observed to affect water's oxidation-reduction potential (ORP), potentially increasing its antioxidative properties. Empirical data suggests that ULF-treated water may enhance cellular hydration and support metabolic functions in biological system. The technology’s ability to alter water at the molecular level offers potential benefits for agriculture, health and wellness, and food and beverage (F&B) processing. The technology owner is seeking potential collaborators: Companies or individuals, interested in integrating this breakthrough technology into their products or exploring new applications across industries such as agriculture, health and wellness, and the F&B sector. Companies or individuals who are looking to acquire the intellectual property (IP). The IP can be specifically carved out for various applications, allowing flexibility and tailored use across different sectors. ULF Electromagnetic Wave Application: The technology uses ULF electromagnetic waves to alter the properties of water by using time varying frequencies and a combination of pulsating AC wave currents along with a DC component of the generated field. Antioxidant Enhancement: By reducing the ORP of water, the technology boosts its antioxidative properties without the need for additional chemicals or additives. Importantly, this process does not make the water more alkaline. No Consumables Required: The device operates without the need for filters, chemicals, or other consumables, allowing for continuous, long-term use with minimal maintenance. The ULF electromagnetic wave technology demonstrates versatile potential across various sectors, with empirical evidence suggesting its applicability in areas such as health and wellness, agriculture, F&B, and industrial water treatment. It has the potential to  Health and Wellness: Antioxidative Benefits: The reduced ORP may enhance water's ability to neutralize free radicals, supporting general health in consumers. Metablic Support: The technology has the potential to enhance molecular energy dynamics to promote improved cellular health and overall metabolic function in the body.  Agriculture: Improved Plant Hydration and Growth: The enhanced capillary action of ULF-treated water allows for more efficient absorption and nutrient delivery in plants. This can optimize crop yield, making it useful for irrigation in agriculture. The improved water absorption can result in healthier plants, faster growth, and better nutrient uptake. Food and Beverage Industry: Extended Shelf Life: The technology can be applied to extend the shelf life of beverages, such as juices, by maintaining their freshness and reducing the need for preservatives. This reduces waste and ensures better product quality over time. Improved Taste and Texture: ULF treatment can reduce bitterness, astringency, and harsh flavors in beverages like coffee, tea, juices, and spirits, enhancing the overall taste profile and consumer experience. It also accelerates the aging process in wines and liquors, producing smoother and more palatable beverages in less time. Cosmetics and Skincare: Antioxidant-Rich Water: The water’s enhanced antioxidative properties could be integrated into cosmetic products and skincare formulations, potentially improving the effectiveness of hydration-based products and promoting healthier skin by neutralizing oxidative stress. Chemical-Free Enhancement: This technology utilizes a pure physical treatment to boost the water’s properties. Additionally, it enhances the taste and extends the shelf life of beverages without any added chemicals. Sustainable and Long-Term Use: No filters or consumables are required for the long-term application of the technology, ensuring a sustainable and hassle-free solution. Electronics, Health and Wellness, Food and beverages, Water, Personal Care, Agriculture, Antioxidant Personal Care, Wellness & Spa, Nutrition & Health Supplements, Manufacturing, Chemical Processes, Foods, Processes
A Point-Of-Care Urine Osmometer for Nocturia Evaluation
Nocturia is a common urinary complaint where one experience interruption of sleep with one or more times at night to void. The current assessment of nocturia is primarily clinical and relies mainly on patients documenting their own bladder diary to complete a Frequency-Volume Chart (FVC) of volume and times of urination between a 24-to-72-hour period. This conventional way of assessment is a manual and inadequate way of diagnosing nocturia. An individual is diagnosed with nocturnal polyuria if the total urine output at night exceeds one-third of total daily output. This technology has developed a point-of-care urine osmometer for the monitoring and profiling of day- and night-time variation in urine osmolality, providing clinicians with valuable insights to facilitate more accurate, objective diagnosis and personalized treatment plans for nocturia. This device is portable and attached with a readout sensor, designed to be user friendly. The technology owner is seeking collaborations with: Medical Institutions and Healthcare Providers: To facilitate clinical validation, implementation, and integration of the portable urine osmometer into routine diagnostic practices for nocturia and other related conditions. Device Manufacturers: To miniaturize the prototype, scale up production, ensure quality control, and help bring the device to market. Research Institutes: To collaborate on further R&D , particularly in optimizing the technology and exploring additional applications, such as hydration monitoring for athletes and military personnel. Data Analytics Partners: To develop advanced software and algorithms for precise data interpretation, which can enhance the device’s diagnostic capabilities and provide more personalized treatment options. Current state-of-the-art for urine osmolality measurement uses a freezing point osmometer, which is often bulky, expensive, and requires specialized training to operate. To address these limitations, a portable urine osmometer that uses impedance measurement coupled with refractive index measurement and activated carbon absorption was developed. This innovative approach provides a quick and accurate measurement of urine osmolality. In a clinical trial involving 225 urine samples, an accuracy of 94.4 ± 5.0% was achieved, comparable to the gold standard freezing point osmometer. The device's compact design allows for easy home use, making it ideal for patients with nocturia to monitor their condition without frequent clinic visits. The current pain point in diagnosing and managing nocturia lies in the absence of an objective and quantitative method. Current clinical diagnosis relies heavily on a cumbersome 3-day bladder diary, which is insufficient but also results in inaccuracies and poor patient compliance. Consequently, urologists are left with the challenging task of providing a diagnosis for the underlying cause of nocturia which may lead to a trial-and-error approach on the medications prescribed. This results in suboptimal management of the condition, leading to unresolved patient discomfort and dissatisfaction. The proposed solution aims to revolutionize the approach to diagnosing and treating nocturia by introducing a portable point-of-care device for urine osmolality profiling. The portable urine osmometer is not only useful for diagnosing nocturia but has potential applications in assessing, monitoring hydration status and renal function in various populations, particularly in athletes, elderly, and military personnel. The market potential for portable urine osmometer, particularly in addressing nocturia, is significant. The global market for nocturia-related drugs is projected to grow at a compound annual growth rate (CAGR) of 6.1%, highlighting the increasing demand for effective nocturia management solutions. Given the high prevalence of nocturia, with approximately 1 in 10 people experiencing moderate to severe symptoms, and the current limitations of diagnostic methods, there are substantial opportunities for a portable urine osmometer. This device offers a cost-effective and accessible alternative to the traditional freezing point osmometer. This technology offers a more precise measurement in assisting physicans on the diagnosis for nocturnal polyuria and providing significant improvement to patient protocol. Besides that, the technology enhances several UVP over the conventional methodology which includes: Providing a comprehensive day and night urine osmolality profile in a home setting with an objective and quantitative readout over the current reliance on subjective bladder diaries.  Compared to existing devices in the market, this device has a much smaller footprint than a laboratory based freezing point osmometer. The device is simple to use and enables a cheaper manufacturing cost. It has a short turnaround time with a 3-minutes readout duration.  An affordable consumer device as the consumable per test is a plastic container pre-filled with activated carbon and a disposable urine container.  Urine, Osmolality, Osmometer, Nocturia, Nocturnal Polyuria, Urine Concentration Healthcare, Diagnostics, Medical Devices
Nontoxic Photoinitiators and 3D Printed Inks
Phosphine oxide-based photoinitiators, such as TPO and BAPO, are commonly used in biomedical applications due to their effective polymerization properties. TPO is widely used in products like coatings, inks, and adhesives. The industry is seeking safer alternatives with an upcoming ban on TPO effective from September 2025 in Europe due to its reproductive toxicity. Current alternatives focus on either low toxicity or increased water solubility, but there is a significant gap in finding a photoinitiator that combines both. This is important for applications requiring high biocompatibility, such as biomedical devices and tissue engineering. This technology is a new generation of photoinitiators that offers significantly lower toxicity compared to TPO/BAPO, making them ideal for sensitive biomedical applications. Their enhanced water solubility allows them to integrate easily into aqueous systems without harmful solvents, supporting the demand for sustainable products. Water-soluble photoinitiators also improve biocompatibility, reducing the risk of toxicity in applications involving direct contact with biological tissues. Additionally, these photoinitiators are customizable in curing speed, depth, and substrate compatibility, making them suitable for a variety of industries including coatings, adhesives, and advanced 3D printing. The technology owner is seeking IP licensing and R&D collaborators in the biomedical field, including manufacturers of hydrogel-based products like wound healing patches, tissue scaffolds, or bioadhesives along with companies in the materials and personal space looking for safer, sustainable photoinitiator alternatives. Medical institutions that can expand on the in vitro cytotoxicity studies or translate in vitro cytotoxicity results into in vivo animal models are also of interest.  Compatible with organic and aqueous systems: These liquid, carbene-precursor photoinitiators can be incorporated into organic or aqueous systems without the need for additional co-solvents. Customisable properties: Liquid by nature, these photoinitiators can be incorporated into the system to elicit different properties (i.e. curing speed, porosity). Reduction in leachate toxicity: Diazo moieties generated through this irradiation could potentially reduce leachate toxicity by reacting and disabling monomers, contributing to safer and more biocompatible materials. Polymerization of various vinyl monomers: Upon exposure to appropriate wavelengths of light (such as UV or visible light), this photoinitiator generates reactive species that efficiently initiate the polymerization of various vinyl monomers. This property makes it highly suitable for use in a broad range of polymerization processes. Removable through washing: Enhance biocompatibility for sensitive in vivo applications such as resorbable tissue scaffolds. Biomedical systems: Medical devices, drug delivery systems, resorbable tissue scaffold and other biomedical systems. Biomedical 3D printing: Releases gases during irradiation, which allows for shrinkage compensation. Can generate porosity for cell seeding in live cell encapsulation applications. Dental materials: Non-yellowing, great for customisable dental applications. Cosmetics: Nail gels and UV-cured beauty treatments. Other applications sensitive to the leaching of toxic compounds: E.g. food packaging, coating, adhesives and any applications that needs to be compliant to regulations and cannot have harmful substances migrating into food or skin. Current solutions in the market have a trade-off between toxicity and water solubility. These photoinitiators represent a significant advancement by combining the two features. It not only addresses current industry challenges but also opens new possibilities for innovation and application. Low toxicity: Notably reduced toxicity in preliminary in vitro studies. Water-soluble: Compatible with aqueous systems which unlocks market potential in biomedical field. Liquid formulations can be easily incorporated into large-scale industrial processes and manufacturing without the prior need for dissolution in compatible solvents. photoinitiator, hydrogel, diazirine, carbene, non-toxic, biomedical, biomedical 3d print, biomedical 3d printing Materials, Bio Materials, Healthcare, Medical Devices
Bendable Concrete Tactile Indicator
Tactile indicators and flat tiles are typically made from porcelain-based or traditional concrete materials. Porcelain surfaces tend to be smooth and slippery, posing a safety risk for pedestrians, and they are also brittle, making them prone to damage. Traditional concrete, while more durable, is bulky and heavy, making installation challenging. Bendable concrete tactile indicators offer a solution to the drawbacks of both materials. They are slip-resistant, durable, and lightweight, making them easier to install. It utilizes high-performance fiber-reinforced concrete that is designed using the micro-mechanics guided principles. The design focuses on suitable tailoring of fiber-cementitious matrix interface that enable tensile strain-hardening characteristics similar to metal. Under normal load conditions, bendable concrete exhibits stiffness comparable to traditional concrete. However, when overloaded, instead of fracturing suddenly, it deforms while continuing to bear the load, much like ductile metals that undergo plastic deformation after yielding. This material is exceptionally tough, with a fracture toughness comparable to that of aluminum alloys. The technology owner is seeking potential partnerships for IP licensing. Potential partners include tile manufacturers and companies in related industries. Compressive strength: Around 50 MPa Flexural strength: 10-15 MPa, three to five times of traditional concrete  Tensile strain capacity: Greater than 3%, several hundred times that of traditional concrete Improved skid resistance: Greater than 50 BPN Reduced tile thickness: Smaller than 12 mm compared to traditional concrete material at 40-60 mm Potential applications include but not limited to tactile indicators and flat tiles for outdoor applications where high skid resistance, durability, and lightweight are of importance. In Singapore, approximately 100,000 m² of tactile indicators are installed at conflict zones in major road junctions. These indicators are also widely used in similar zones at service road junctions within HDB estates, industrial parks, universities, schools, hospitals, train stations, and other public buildings. Additionally, an estimated 39,000 m² of tiles will be required for an upcoming footpath rejuvenation project, where flat tiles will be used to repave footpaths in areas across Singapore, including the Central Business District. Surface skid resistant: Provides more friction while walking, hence better footing compared to porcelain-based tactile indicators. Durable: Less prone to crack, chips or wear and tear compared to porcelain-based solutions, allowing for the creation of thin tactile indicators without the need for steel reinforcement. bendable concrete, strain hardening cementitious composites, cement, tactile indicator, tile Materials, Composites
Efficient Plastic Sorting with AI and Hyperspectral Camera
This invention addresses a significant challenge in the field of plastic resin identification and sorting, a critical issue in material recovery facilities (MRFs) and industrial plastic sorting. Traditional methods of sorting plastic resins are often inefficient and prone to errors, leading to contamination and reduced quality of recycled materials. This technology introduces a novel AI training method specifically designed for plastic resin classification using near-infrared (NIR) spectroscopy. The approach leverages self-supervised learning and masked signal modeling (MSM) to enhance the accuracy and robustness of deep learning models in identifying various plastic resins, based on their spectral signature data. One of the unique aspects of this technology is its integration with a rotary sorting system, which significantly improves the speed and precision of sorting operations in MRFs. By automating the resin identification process with accuracy of up to 95% and reducing reliance on manual sorting, this technology helps facilities achieve higher purity in recycled materials, addressing a critical need in the recycling industry. The technology owner is seeking to collaborate with industry partners operating MRFs and uses a rotary sorting system to integrate and perform test-bedding of the technology. High Accuracy: The AI model achieves over 95% accuracy in plastic resin classification, leveraging near-infrared (NIR) spectroscopy combined with deep learning techniques. Modular and Scalable Design: The system's modular, stackable design allows easy integration into existing facilities and scalable expansion, from small local MRFs to large industrial plastic sorting plants. It can be combined with robotic arms or human-operated stations, offering a flexible, customised solution that adapts to specific operational needs. Real-Time, High-Speed Sorting: The integration of a rotary sorting system enables real-time processing, handling up to 2 plastic samples in 1 second. This speed and efficiency surpasses traditional conveyor-based systems, making it ideal for large-scale operations. Energy Efficiency and Cost Reduction: This rotary system is energy-efficient, reducing operational costs by up to 30% compared to conventional methods. Its low maintenance requirements further minimise downtime, making it a cost-effective long-term solution. Sustainability Impact: By improving sorting accuracy and efficiency, the technology supports sustainable recycling practices and reduces the environmental footprint of plastic waste management.   Waste management and recycling Manufacturing and production Environmental and sustainability applications It is estimated that by 2025, the global market for machine vision technologies to improve material sorting process will reach a value of US$1.5 billion, with a compound annual growth rate (CAGR) of 25% between 2020 and 2025 – Picvisa. Utilising advanced AI models trained with near-infrared (NIR) spectroscopy and incorporating self-supervised learning with masked signal modeling (MSM), this technology achieves over 95% accuracy in resin classification. This precision surpasses existing methods, reducing contamination and improving the purity of recycled materials. AI-based plastic sorting, Industrial plastic recycling Waste Management & Recycling, Industrial Waste Management, Sustainability, Circular Economy
Real-Time IoT Water Monitoring and Treatment for Remote Communities
Access to clean and safe drinking water is a critical issue in many parts of Asia, particularly in rural and less accessible regions. A large portion of the population relies on surface or groundwater for daily consumption, yet as many as 240 million people are exposed to water that exceeds World Health Organization (WHO) safety limits. The increasing contamination of water sources due to anthropogenic activities such as industrial pollution, agricultural runoff, and inadequate sanitation has made water treatment essential. However, most portable water treatment systems currently available lack a vital feature: real-time monitoring of the treated water’s quality. This leaves consumers uncertain about whether the water they are drinking is truly safe, especially in unpredictable environments where water quality can fluctuate.  This technology combines IoT technology with water monitoring, offering real-time monitoring and feedback on water quality. This portable system allows users to remotely control and manage the treatment process, ensuring operational efficiency even in rural areas. With water-saving features and a low-maintenance design, it provides a sustainable and reliable solution for safe drinking water in remote and resource-limited regions.  The technology owner seeks collaboration with end users like rural communities, humanitarian organizations, and government agencies focused on water quality. They are also looking for test-bedding partners such as environmental research institutions and NGOs, and solution providers like manufacturers and IoT developers interested in sustainable water treatment and international expansion.  Portability: Compact design, easy to transport and deploy in remote locations. Remote Control: Fully controllable via mobile phone, allowing users to manage water treatment operations remotely.  Real-Time Monitoring: Continuous water quality measurement with real-time data accessible through a mobile app.  Innovative Cleaning System: Advanced cleaning mechanism reduces maintenance and extends operational life.  Modular & Scalable Design: Customizable system modules that can be scaled up or down based on user requirements and water demand.  Off-Grid Applications: Ideal for remote areas without access to conventional water treatment infrastructure.  River/Surface/Groundwater Treatment: Suitable for monitoring treated water from various water sources such as rivers, lakes, and wells.  Rainwater Harvesting: Enhances the usability of harvested rainwater by ensuring its quality through data monitoring.  Consumer Market: Designed for rugged or rural terrains, catering to campers, adventurers, and outdoor enthusiasts.  Military and Outdoor Activities: Useful for army camps and field operations, providing data for safe drinking water in challenging environments. Agriculture Irrigation: Adaptable for small-scale agricultural use to provide purified water for crops irrigation or livestocks.  Real-Time Water Quality Monitoring: Provides continuous feedback on treated water quality, ensuring consumer confidence and safety.  IoT-Enabled Remote Control: Users can remotely control and monitor the system via mobile devices, offering convenience and flexibility.  Water-Saving Backwash Feature: Optimized design reduces water wastage during backwash, promoting sustainability and efficient water use.  Predictive Maintenance Alerts: Integrated system alerts users for timely maintenance, reducing downtime and ensuring consistent operation.  Maintenance Alerts: Integrated system alerts users for timely maintenance, reducing downtime and ensuring consistent operation.  Enhanced Consumer Confidence: The system's real-time monitoring and remote-control features offer greater peace of mind compared to conventional water filtration systems (lacking a monitoring system).  Real-Time Data Acquisition: For monitoring and prediction of water consumption patterns and filter performance.  portable water treatment, water treatment, pollution detection, water, detection, iot, water quality Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems, Sustainability, Sustainable Living
Advanced Multi-Material Silicone 3D Printer
Current additive manufacturing technologies face limitations in material diversity, lengthy post-processing times and difficulties in integrating complex structures or fibers into printed components. As a result, traditional 3D printers and processes struggle to meet the growing demand for more versatile applications. The Advanced Multi-Material Silicone 3D Printer addresses these challenges by enabling 3D printing with a wide range of materials, from soft elastomers to hard epoxies. This technology produces high-resolution geometries with customizable mechanical properties. It enables the fabrication of hollow structures and advanced textures without the need for molds or multi-step processes. It resolves a significant pain point in the production of intricate, flexible components by reducing production time and expanding the range of printable materials. By bridging a critical gap in the market, this technology and its IP offers a flexible, multi-material 3D printing solution that delivers both performance and efficiency. The technology owner is looking for potential partnership through R&D collaboration, IP licensing and test-bedding. Ideal collaboration partners across the value chain include companies in automation, robotics, manufacturing, medical devices, and wearable technology. Key Features:  Multi-material 3D printing: 3D print with a wide range of materials, from soft elastomers to hard epoxies, offering greater versatility in applications Direct ink writing (DIW): printing with support gels enables the fabrication of intricate, high-resolution geometries, including hollow structures and flexible components Automated fiber embedding (AFE): enhanced mechanical properties of printed objects through seamlessly embedding fibers during the printing process Specifications of 3D Printer:  Build volume: 350 x 350 x 400 mm  Printing accuracy: +/- 0.1mm  Control pressure: 1-100 psi  3 Cameras (Front camera, bottom camera and top stereo vision camera) Auto bed levelling Multi-material printing Integrated pressure control  Healthcare: ideal for medical devices requiring elastomer components with complex structures, such as custom prosthetics, orthotics, and implants Automation, Robotics, and Manufacturing: enables the creation of inflatable structures, actuators, and grippers with complex geometries and integrated functionality Wearables: facilitates the production of smart textiles by printing directly onto fabrics, supporting the development of smart clothing with integrated sensors, communication systems, and responsive elements, as well as fashion enhancements Prototyping: offers a rapid turnaround for customized components compared to traditional multi-step elastomer molding methods Other Applications: consumer goods industries that require the fabrication of intricate and flexible components Multi-material product: 3D printed part with varying elasticity and hardness  Seamless integration: enables high-resolution geometries with hollow structures and advanced textures Design flexibility: overcomes traditional molding constraints, allowing for greater creative freedom Time and cost efficient: reduces production and post-processing times compared to traditional multi-step molding techniques   3D, Soft grippers, silicone, epoxy, robotics, additive manufacturing, manufacturing, prototyping, Metamaterials, Healthcare, Fashion, Recycling, Protection enhancement, gel, elastomer, urethane, fibers Materials, Plastics & Elastomers, Manufacturing, Assembly, Automation & Robotics, Additive Manufacturing
Close menu