Tactile indicators and flat tiles are typically made from porcelain-based or traditional concrete materials. Porcelain surfaces tend to be smooth and slippery, posing a safety risk for pedestrians, and they are also brittle, making them prone to damage. Traditional concrete, while more durable, is bulky and heavy, making installation challenging.
Bendable concrete tactile indicators offer a solution to the drawbacks of both materials. They are slip-resistant, durable, and lightweight, making them easier to install. It utilizes high-performance fiber-reinforced concrete that is designed using the micro-mechanics guided principles. The design focuses on suitable tailoring of fiber-cementitious matrix interface that enable tensile strain-hardening characteristics similar to metal. Under normal load conditions, bendable concrete exhibits stiffness comparable to traditional concrete. However, when overloaded, instead of fracturing suddenly, it deforms while continuing to bear the load, much like ductile metals that undergo plastic deformation after yielding. This material is exceptionally tough, with a fracture toughness comparable to that of aluminum alloys.
The technology owner is seeking potential partnerships for IP licensing. Potential partners include tile manufacturers and companies in related industries.
Potential applications include but not limited to tactile indicators and flat tiles for outdoor applications where high skid resistance, durability, and lightweight are of importance.
In Singapore, approximately 100,000 m² of tactile indicators are installed at conflict zones in major road junctions. These indicators are also widely used in similar zones at service road junctions within HDB estates, industrial parks, universities, schools, hospitals, train stations, and other public buildings. Additionally, an estimated 39,000 m² of tiles will be required for an upcoming footpath rejuvenation project, where flat tiles will be used to repave footpaths in areas across Singapore, including the Central Business District.