Histopathology is a cornerstone of modern medicine, providing crucial information that enables doctors to formulate optimal treatment strategies before, during, and after surgeries. However, current methods for obtaining histological images grapple with a compromise between speed and accuracy and suffer from organ-dependent inconsistencies. Addressing these challenges, our technology was developed as a versatile solution to cater to a wide array of clinical scenarios. It sets a new benchmark for medical standards with its rapid, precise, and label-free on-the-spot imaging capability.
Computation High-throughput Autofluorescence Microscopy by Pattern Illumination is a one-of-a-kind patented solution n that can detect and provide instant information about cancer status before, during, and after surgeries. This technology lets surgeons place fresh tissue samples taken directly from the patient into the microscope and receive high-resolution and virtually stained histological images in just three minutes.
The primary adopters of this technology are expected to be healthcare organizations, hospitals, and research institutions, or any entity involved in histopathology, cancer diagnosis, and surgery. This technology fills a crucial void in the market by providing swift, high-resolution, label-free imaging of thick tissue samples, an achievement previously unattainable. Consequently, this technology not only accelerates the diagnostic process but also enhances its precision, revolutionizing the field of histopathology
This is an innovative solution designed to revolutionize histological imaging. It consists of several key components that contribute to its functionality:
The technology holds immense potential across various sectors, predominantly in healthcare and medical research. It can be utilized during biopsy sessions preceding surgeries, providing doctors with a rapid means to verify sample sufficiency. This capability can minimize the need for repeated biopsies, thereby improving patient comfort and experience. Furthermore, it aids in preserving the integrity of the tissue sample, facilitating subsequent consumptive testing.
In the operating room, this technology can serve as an intraoperative imaging tool, potentially replacing frozen sections. This enables more rapid and precise intraoperative margin analysis during various cancer resection surgeries. With its capacity for swift and accurate imaging of freshly-excised thick tissue, our technology is anticipated to play an instrumental role in promoting conservative surgeries. Such procedures aim to preserve more normal tissues during tumor removal, enhancing patient physiological function and life expectancy without compromising treatment efficacy.
Lastly, the device can function as a tool for the digitization of tissue samples post-surgery. Hospitals often retain tissue samples for up to 10 years as a reference record. However, physical storage demands significant space and resources to maintain tissue conditions. The ability to digitize these tissues provides a more accessible and convenient resource for research institutes and doctors to conduct further studies, thereby optimizing storage and potentially expediting medical research.
The market size for the technology is substantial, considering it serves the healthcare and medical research sectors, both of which are substantial and growing markets. The global histopathology services market was valued at around USD 22.68 billion in 2020 and projected to grow at a CAGR of 6.5% from 2021 to 2028, reaching approximately USD 37 billion by 2028. The market for medical imaging equipment, which the CHAMP Microscope™ would also fall under, was projected to reach USD 43.3 billion by 2027. These figures suggest a substantial potential market for the technology.
This technology stands as a significant improvement over the current clinical gold standard in histopathological imaging. The traditional methods, including Formalin-fixed Paraffin-Embedded (FFPE) and frozen section analysis, are either time-consuming or lack precision.
The Unique Value Proposition (UVP) lies in the ability to significantly reduce the time required for histopathological imaging while maintaining high accuracy this technology
In sum, the technology offers a faster, more accurate, and more versatile solution for histopathological imaging, significantly enhancing clinical workflow efficiency and potentially leading to better patient outcomes. This combination of speed, accuracy, and convenience sets apart from the current clinical gold standards.