Sustainability Hub

Environment

Environmental technology and innovations play a critical role in driving Singapore's sustainability goals. By advancing waste management to promote a circular economy, ensuring pollution control, safeguarding public health, and building climate resilience, these environmental innovations help create a resource-efficient and climate-resilient nation. 

IPI’s curated selection of cutting-edge environmental technologies presents enterprises with unique co-creation opportunities to address pressing environmental challenges. In line with the Singapore Green Plan 2030, these solutions empower businesses to contribute to a low-carbon, climate-resilient future, while unlocking new avenues for sustainable growth and long-term business success.

With environmental technology and innovation at the forefront in Singapore, businesses can leverage these advancements to enhance their sustainability efforts, meet stringent environmental standards and remain competitive, while contributing to a greener economy. 

Sustainable Packaging for Fresh Produce Protection
Globally, the packaging industry faces increasing pressure to reduce its environmental footprint, particularly with the impending implementation of regulations in Europe which requires all packaging to be recyclable or biodegradable by 2025. Traditional packaging materials, often derived from petroleum-based plastics, contribute significantly to environmental pollution, creating waste that takes decades to degrade. Moreover, in industries such as agriculture and food logistics, packaging is often not optimised for moisture resistance, leading to increased spoilage and product damage during transport and storage. This eco-friendly packaging technology, made from natural rubber latex, is fully biodegradable while retaining its cushioning and protective capabilities. Its moisture-resistant properties make it particularly ideal for fresh produce, offering reliable protection throughout transportation and storage. Designed for businesses in the fresh produce sector—such as farmers, packers, and exporters—this sustainable packaging solution meets strict environmental standards while minimizing fruit waste. By providing superior protection, it helps businesses reduce spoilage and product loss, ensuring that goods arrive in optimal condition. The technology owner is looking to collaborate with partners in the packaging, logistics, and agricultural industries to co-develop, testbed and implement this sustainable packaging solution across various sectors.
Green and Multifunctional Graphene-based Antibacterial Composite for Textiles
Graphene-based antibacterial composite materials are a class of materials that combine graphene's unique properties with antibacterial agents to create surfaces or textiles that can effectively kill or inhibit the growth of bacteria. With its inherent antibacterial properties, graphene’s large surface area and high conductivity makes it an ideal carrier for functional molecules that exhibit antibacterial properties naturally. The technology on offer is a proprietary process to prepare and application of a green and multifunctional graphene-based antibacterial composite material for textiles. These materials can be applied to various textile materials and products, possessing antibacterial, antiviral, and deodorizing properties. Featuring high efficiency (99%), broad-spectrum coverage, non-toxicity, functionalised textiles can be used in healthcare and consumer products for long-lasting and multifunctional antibacterial properties. It is non-leaching and more eco-friendly compared to traditional chemical antibacterial products. This technology can endow textile products with antibacterial, antiviral, and deodorizing properties, enhancing the added value of traditional textile materials for safe and non-toxic antibacterial performance. The technology owner is interested in joint R&D projects with companies looking to incorporate this graphene-based antibacterial composite and develop new eco-friendly and multifunctional antibacterial textile products.  
Wireless Self-Powered Data Logger/Transmitter
A self-sustaining, compact IoT sensor hub, has been developed to solve a critical challenge faced by industries requiring real-time monitoring in remote, hard-to-reach locations. Traditional sensor systems often require extensive wiring, regular maintenance, and external power sources, making them costly and inefficient for long-term deployment. This data logger/transmitter addresses these challenges with its self-sustaining solar-recharging battery system, which powers industrial sensors (4-20mA, Modbus, I2C, Pulse) and enables continuous data monitoring without the need for frequent maintenance or battery replacement. With cellular connectivity options (LTE-M, NB-IoT, GSM) and GPS positioning, the device supports real-time data transmission from sensors, allowing industries such as environmental monitoring, agriculture, oil and gas, and infrastructure to monitor conditions like pressure, temperature, humidity, and flow rates from anywhere. Its rugged design ensures reliable operation in harsh environments, reducing the risk of equipment failure and costly downtime. This plug-and-play solution is easy to deploy, making it an attractive option for industries seeking low-maintenance, cost-effective, long-term monitoring systems. The device is designed to optimize resource management, ensure operational efficiency, and enhance decision-making through continuous, reliable data collection. It is ideal for industries with remote operations or those requiring constant monitoring in challenging conditions. The technology owner is seeking collaboration with system integrators specialising in automation, telemetry, and remote data acquisition.
Eco-Friendly and Biodegradable Materials from Upcycled Tea Waste
Tea is one of the most widely consumed beverages globally, and its production generates significant volumes of waste, including spent tea leaves. Like most organic agricultural waste, tea waste often ends up in landfills or incineration, contributing to greenhouse gas emissions and environmental degradation. This technology has been developed to address the pressing challenge of agricultural waste disposal and the environmental impact of non-biodegradable materials through a patented process that upcycles tea waste into biodegradable alternatives. By utilizing advanced plant extraction and biosynthesis techniques, this technology transforms agricultural waste into versatile materials that serve as eco-friendly substitutes for traditional timber and plastics. The resulting materials are not only durable but also fully biodegradable, offering a sustainable solution for industries such as fast-moving consumer goods (FMCG) packaging, construction materials, and furniture production. This innovation contributes to a circular economy by reducing waste at the source and encouraging the use of renewable resources.  The technology owner is interested to work with companies in the packaging and furniture sectors on joint R&D projects to develop new products using these biodegradable materials, ultimately reducing the environmental footprint of these industries.
Cost-effective and More Durable Antimicrobial Coatings
Controlling the spread of pathogens is crucial in high-traffic areas and healthcare environments. This can be achieved through environmental control methods like sanitising surfaces to prevent diseases from spreading through contaminated surfaces. However, it is labour intensive and impractical to sanitise all surfaces continuously. Antimicrobial coating is an effective way to retard the spread of pathogens on surfaces by inactivating bacteria, viruses and fungi when they contaminate a surface. Despite being commercially available, the cost and durability of the anti-microbial coating technology can still be further improved. Common commercial coatings that are available to consumers have a gradually diminishing antimicrobial strength and mostly only last a few months. It is also difficult for some coatings to adhere onto slippery surfaces like plastics. To address these challenges, the technology owner has developed a cost-effective process to fabricate more durable, high performance antimicrobial coatings on different materials, including glass and plastic. They are seeking industry partners interested to co-develop, scale up and commercialise this coating for various applications.
Rapid Formalin Test Kit
The formalin test kit is a paper-based device suitable for detection of formalin contamination in paints, coating material such as pressed wood and plywood, fresh food such as meat, vegetables and fruits with 99.9% sensitivity & specificity, ensuring accurate results without interference. The test kit is quick and easy to use, with rapid results making it accessible for general use. The tech provider is looking for licensee to license the technology.
Edge AI-based Drone System for Pipe Inspection and Monitoring
The Edge AI-based Drone System for Pipe Inspection and Monitoring addresses the need for efficient, accurate, and real-time pipeline infrastructure inspections. It leverages edge AI processing to detect defects, offering a significant advantage over traditional methods. Unlike conventional systems that rely solely on optical cameras, this solution integrates both optical and thermal imaging, enhancing the detection of various pipeline-related issues. The system’s unique value proposition lies in its ability to process data locally on the drone, ensuring immediate issue detection and minimizing data breach risks by reducing the reliance on cloud processing. The technology owner is seeking collaboration with SMEs specializing in drone manufacturing, AI and machine learning, thermal imaging, industrial inspection services, telecommunications and IoT, and data security, which offer complementary expertise for the development and commercialization of the technology.
Eco-Friendly and Cost-Effective Modular PV Recycling Solution
The global demand for proper end-of-life management of photovoltaic (PV) panels is rising, with an estimated 78 million tonnes of PV waste expected by 2050. Singapore's rapidly expanding solar industry faces a growing challenge of sustainable disposal as it anticipates a solar capacity of over 1.2GW by 2024. According to International Renewable Energy Agency (IRENA), this could result in 3,000 tonnes of PV waste in 2024-2025 and up to 6,600 tonnes by 2030. Given Singapore's limited land space, there is an urgent need for efficient and profitable recycling solutions to minimize solar panel waste going to landfills. This solution enables PV panel recycling through fully mechanical processes housed in a 40-foot shipping container. Unlike traditional methods that use thermal treatments or harmful chemicals, it employs customized robotic and mechanical processes, producing no chemical waste and consuming less energy. As a mobile solution, it can be deployed directly at decommissioning sites, eliminating the need for transport to centralized facilities and significantly reducing logistics costs. This environmentally friendly, cost-effective solution turns PV waste into a profitable business opportunity. It offers a circular, plug-and-play solution for recyclers looking to quickly expand into solar panel recycling and meet market demands efficiently. It delivers environmental, technological, and commercial benefits. The technology owner is keen to collaborate with local and international e-waste recycling companies with established material networks for aluminium, glass, and silicon, as well as partners with advanced extraction technologies or further upcycling capabilities for silicon and silver.
Oily Wastewater Treatment Technology using High-Performance Oil-Degrading Microorganisms
The increasing use of fats and oils in food processing has led to higher concentrations in industrial effluents, overwhelming traditional wastewater treatment systems and clogging sewer pipes, which disrupts business operations. Commonly used methods like pressurized floating separation are limited and often result in incineration, increasing waste management costs. Rising treatment costs, odor control, and waste management remain significant concerns for factory operators. This technology uses an innovative "organic treatment method" with powerful microorganisms that decompose fats and oils directly from wastewater. These microorganisms can rapidly degrade various fats and oils, including plant, animal, and fish oils, as well as trans fatty acids, even at concentrations over 10,000 mg/L, using a microbial symbiotic system. Efficiently degrade various fats and oils, including plant, animal, fish oils, as well as trans fatty acids. By decomposing fats and oils directly, it reduces the need for physical separation and incineration, cutting down on industrial waste management costs. This approach also supports sustainable waste reduction and mitigates the risk of clogged sewer pipes. Technology has demonstrated the stable performance of oil decomposition in wastewater throughout a year in a field test at a food oil factory.  The technology owner seeks collaboration with food, oil, and other plants with oily wastewater and wastewater treatment facility providers looking for organic solutions for end users.