innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Eco-Friendly Vegan Leather: A Sustainable, Antibacterial Solution for the Fashion Industry
The leather industry, long dependent on livestock farming, is facing growing criticism for its significant environmental impact. Leather production contributes to deforestation, high water consumption, and the release of methane—a potent greenhouse gas—from livestock farming. Additionally, the tanning and dyeing processes generate hazardous waste and chemicals, leading to air and water pollution. While synthetic leather offers an animal-free alternative, it relies heavily on petroleum-based plastics like polyurethane (PU) and polyvinyl chloride (PVC), which contribute to microplastic pollution and rely on finite fossil fuel resources. Meanwhile, large quantities of agricultural waste, such as cocoa shells, mangosteen peels, and durian fibers, often end up in landfills, where they release methane as they decompose, further exacerbating environmental concerns. This technology transforms agricultural waste into a sustainable, plant-based leather alternative that addresses both environmental sustainability and the rising demand for animal-free products. By utilizing discarded cocoa shells, along with mangosteen peels and durian fibers, it offers several benefits. The natural fibers from durian provide antibacterial properties, making it ideal for products like shoes, bags, and jackets prone to bacterial buildup. Additionally, the production process emits fewer greenhouse gases, consumes less water, and repurposes agricultural waste, aligning with circular economy principles. This eco-friendly material is biodegradable and designed for recycling, offering a more sustainable alternative to traditional and synthetic leathers. The technology owner is looking for collaborations with textile/furniture companies that focuses on sustainability.  Plant-Based Vegan Leather Synthesis Innovation Raw Materials: Cocoa shells, mangosteen peels, durian fibers, and other fruit peels are used as primary materials. Agricultural waste is ground into fine particles for the production process. Formulation: Materials are mixed with research-specific binding agents to create a plant-based leather precursor. Formulations and ratios are designed to ensure proper texture, elasticity, and durability. Production Process: The mixture is spun and poured into custom-designed moulds. A specialized resin coating is applied to achieve the desired thickness (approximately 0.8 mm). The material is then placed in a drying oven to remove moisture. Post-Processing: The vegan leather is cleaned and inspected for quality, including surface texture, flexibility, and durability. Testing: The material undergoes rigorous testing for surface testing, flexibility, durability and functionality. The production process for plant-based leather emits fewer greenhouse gases and consumes less water and natural resources. Here are the potential applications, but not limited to: Fashion: Handbags, belts, outerwear and clothing Upholstery and Interior Design: Furniture coverings and automotive interiors Footwear: Sustainable anti-bacterial footwear Sports equipment: Vegan leather alternatives for sports gear – gloves or protective wear   Eco-friendly and Sustainable: Made from agricultural by-products (e.g., cocoa husks, mangosteen peels), reducing waste and lowering the carbon footprint compared to animal leather and plastic alternatives. Cruelty-free and Ethical: Derived from plants, offering a humane alternative to animal leather, appealing to the growing demand for cruelty-free products. Reduced Resource Usage: Requires less water, energy, and chemicals than traditional leather production, minimizing harmful pollutants like heavy metals. Biodegradable: More likely to break down naturally over time, reducing long-term waste compared to synthetic leather made from PVC or other plastics. Versatile and High-Quality: Can mimic the look and feel of traditional leather, customizable in texture, colour, and finish, suitable for fashion, accessories, and automotive interiors. Market Differentiation: Meets the growing demand for sustainable, vegan products, helping brands differentiate with eco-conscious, ethical offerings. sustainable materials, vegan leather, plant-bsaed leather, cocoa shell leather, durian fibre leather, eco-friendly fashion, biodegradeable materials, leather alternatives, low environmental impact Sustainability, Circular Economy, Sustainable Living
Sustainable Paper Coating for Plastic-Free Packaging
The rise in plastic pollution globally is driving a critical need for sustainable alternatives to single-use plastic in packaging. Traditional plastic-based packaging materials contribute significantly to environmental degradation, as they are non-biodegradable and create long-lasting waste. This technology offers a sustainable and eco-friendly solution through a fully biodegradable coating for paper packaging. The coating enhances the barrier properties of paper, enabling it to resist water, grease, and oxygen, making it an ideal replacement for single-use plastic in applications such as packaging and food containers. Not only does the coating maintain recyclability and biodegradability, but it is also compatible with existing manufacturing equipment and can be applied either before or after printing, minimising disruption to current production processes. The technology owner is interested to work on joint R&D opportunities with packaging companies and businesses focused on sustainable solutions for consumer goods. This technology is a proprietary coating formulation that can be applied to paper and fully biodegradable. Some features of the coating include: Enhances paper barrier properties against moisture, grease, and oxygen Food-grade (FDA approved) Fully recyclable and biodegrades in 180 days Scalable and compatible with existing manufacturing processes such as silk screen, rotogravure and flexography Can be applied before or after printing Thermally cured at 120 °C for 30 seconds Improves mechanical properties of pure paper This technology is suitable for a wide range of industries, including food and beverage packaging (such as cups, containers, and wrappers), cosmetics (biodegradable packaging for beauty products), and general consumer goods packaging. It serves as a sustainable alternative to traditional plastic-based barriers, providing an eco-friendly solution that meets the increasing consumer demand for environmentally conscious products. Environmentally sustainable as it provides the same protective qualities as synthetic plastic, with the added benefits of full biodegradability and recyclability Cost-effective coating solution Scalable solutions as it is compatible with existing production processes for application sustainable packaging, biodegradable coating, coating, greaseproof, oilproof, waterproof, circular economy, food packaging, paper packaging, eco-friendly, recycling, recylability, plastic alternative Chemicals, Coatings & Paints, Inorganic, Foods, Packaging & Storage, Sustainability, Circular Economy
Sustainable Packaging for Fresh Produce Protection
Globally, the packaging industry faces increasing pressure to reduce its environmental footprint, particularly with the impending implementation of regulations in Europe which requires all packaging to be recyclable or biodegradable by 2025. Traditional packaging materials, often derived from petroleum-based plastics, contribute significantly to environmental pollution, creating waste that takes decades to degrade. Moreover, in industries such as agriculture and food logistics, packaging is often not optimised for moisture resistance, leading to increased spoilage and product damage during transport and storage. This eco-friendly packaging technology, made from natural rubber latex, is fully biodegradable while retaining its cushioning and protective capabilities. Its moisture-resistant properties make it particularly ideal for fresh produce, offering reliable protection throughout transportation and storage. Designed for businesses in the fresh produce sector—such as farmers, packers, and exporters—this sustainable packaging solution meets strict environmental standards while minimizing fruit waste. By providing superior protection, it helps businesses reduce spoilage and product loss, ensuring that goods arrive in optimal condition. The technology owner is looking to collaborate with partners in the packaging, logistics, and agricultural industries to co-develop, testbed and implement this sustainable packaging solution across various sectors. Made from natural rubber (a renewable resource), this packaging material is biodegradable and engineered to provide effective protection and cushioning properties. Some key features of this sustainable packaging material include: Moisture-resistant - making it ideal for fresh produce and other sensitive goods Good shock absorption properties - to protect fragile items during transportation Flexible and adaptable - customisable to meet specific customer needs Eco-friendly Potential applications include (but not limited to): Fresh Produce Packaging: Ensures fruits and vegetables remain intact during transit, reducing spoilage and extending shelf life Fragile Goods: Ideal for cushioning electronics, glassware, and other delicate items E-Commerce and Consumer goods: Provides an eco-friendly cushioning solution for online retail packages Pharmaceuticals and Health Products: Protects sensitive medical products from damage during shipment while adhering to sustainability guidelines This biodegradable packaging technology offers a unique combination of sustainability, durability, and moisture resistance. It offers a packaging solution for industries looking to comply with stringent environmental regulations while maintaining product safety and integrity during transportation. Its ability to reduce both packaging and food waste and protect moisture-sensitive goods enables adopters to shift toward sustainable packaging. sustainable packaging, fresh produce, eco-friendly, impact, protection, moisture resistant, natural, rubber, latex, packaging, composite, fruits, vegetables, food packaging Materials, Plastics & Elastomers, Composites, Foods, Packaging & Storage, Sustainability, Circular Economy
Efficient Plastic Sorting with AI and Hyperspectral Camera
This invention addresses a significant challenge in the field of plastic resin identification and sorting, a critical issue in material recovery facilities (MRFs) and industrial plastic sorting. Traditional methods of sorting plastic resins are often inefficient and prone to errors, leading to contamination and reduced quality of recycled materials. This technology introduces a novel AI training method specifically designed for plastic resin classification using near-infrared (NIR) spectroscopy. The approach leverages self-supervised learning and masked signal modeling (MSM) to enhance the accuracy and robustness of deep learning models in identifying various plastic resins, based on their spectral signature data. One of the unique aspects of this technology is its integration with a rotary sorting system, which significantly improves the speed and precision of sorting operations in MRFs. By automating the resin identification process with accuracy of up to 95% and reducing reliance on manual sorting, this technology helps facilities achieve higher purity in recycled materials, addressing a critical need in the recycling industry. The technology owner is seeking to collaborate with industry partners operating MRFs and uses a rotary sorting system to integrate and perform test-bedding of the technology. High Accuracy: The AI model achieves over 95% accuracy in plastic resin classification, leveraging near-infrared (NIR) spectroscopy combined with deep learning techniques. Modular and Scalable Design: The system's modular, stackable design allows easy integration into existing facilities and scalable expansion, from small local MRFs to large industrial plastic sorting plants. It can be combined with robotic arms or human-operated stations, offering a flexible, customised solution that adapts to specific operational needs. Real-Time, High-Speed Sorting: The integration of a rotary sorting system enables real-time processing, handling up to 2 plastic samples in 1 second. This speed and efficiency surpasses traditional conveyor-based systems, making it ideal for large-scale operations. Energy Efficiency and Cost Reduction: This rotary system is energy-efficient, reducing operational costs by up to 30% compared to conventional methods. Its low maintenance requirements further minimise downtime, making it a cost-effective long-term solution. Sustainability Impact: By improving sorting accuracy and efficiency, the technology supports sustainable recycling practices and reduces the environmental footprint of plastic waste management.   Waste management and recycling Manufacturing and production Environmental and sustainability applications It is estimated that by 2025, the global market for machine vision technologies to improve material sorting process will reach a value of US$1.5 billion, with a compound annual growth rate (CAGR) of 25% between 2020 and 2025 – Picvisa. Utilising advanced AI models trained with near-infrared (NIR) spectroscopy and incorporating self-supervised learning with masked signal modeling (MSM), this technology achieves over 95% accuracy in resin classification. This precision surpasses existing methods, reducing contamination and improving the purity of recycled materials. AI-based plastic sorting, Industrial plastic recycling Waste Management & Recycling, Industrial Waste Management, Sustainability, Circular Economy
Eco-Friendly and Biodegradable Materials from Upcycled Tea Waste
Tea is one of the most widely consumed beverages globally, and its production generates significant volumes of waste, including spent tea leaves. Like most organic agricultural waste, tea waste often ends up in landfills or incineration, contributing to greenhouse gas emissions and environmental degradation. This technology has been developed to address the pressing challenge of agricultural waste disposal and the environmental impact of non-biodegradable materials through a patented process that upcycles tea waste into biodegradable alternatives. By utilizing advanced plant extraction and biosynthesis techniques, this technology transforms agricultural waste into versatile materials that serve as eco-friendly substitutes for traditional timber and plastics. The resulting materials are not only durable but also fully biodegradable, offering a sustainable solution for industries such as fast-moving consumer goods (FMCG) packaging, construction materials, and furniture production. This innovation contributes to a circular economy by reducing waste at the source and encouraging the use of renewable resources.  The technology owner is interested to work with companies in the packaging and furniture sectors on joint R&D projects to develop new products using these biodegradable materials, ultimately reducing the environmental footprint of these industries. The technology uses a unique, patented process involving advanced plant extraction and biosynthesis to transform tea waste into biodegradable green materials. The materials produced through this process are 100% biodegradable, breaking down naturally over time without leaving behind harmful residues, making them ideal for environmentally conscious industries. Some features of these green materials include: Highly durable and versatile Environmentally sustainable alternative to plastics and timber Customisable and scalable FDA-approved for products requiring direct food contact Available as fibers, pellets and boards Potential applications of this green material include (but not limited to): Packaging for FMCG sector Hotel amenities Electronic product casing Construction (non-structural) Furniture Fully biodegradable and sustainable, offering a green alternative to non-renewable, petroleum-based plastics and timber products Versatile across multiple industries, providing adopters with the opportunity to replace traditional materials in several applications while maintaining performance and durability Scalable and customisable to meet specific material requirements for different industries, enabling broad adoption and tailored applications tea, agricultural waste, plastics, circular economy, upcycling, valorisation, packaging, eco-friendly, furniture, sustainable, ecological, spent tea leaves, durable, biodegradable, green Materials, Composites, Foods, Packaging & Storage, Waste Management & Recycling, Food & Agriculture Waste Management, Sustainability, Circular Economy
Eco-friendly Coating for Preservation of Tropical Fruits
Globally, the post-harvest loss of tropical fruits due to short shelf life is estimated to be around 30-50% of total production. This translates to approximately 30 million tons of fruit wasted each year. The economic cost is substantial, amounting to billions of dollars annually, affecting producers, retailers, and consumers due to reduced availability and increased prices. Proliferation of fungal and bacterial population further adversely impact the shelf life and fruit health. Our innovation offers tailored, edible coating using regulatory approved ingredients specific to the fruit family and microbiomes observed in the farms. Tests conducted in labs and farms over the past two years have provided positive results for tropical fruits such as mango, avocado and papaya in doubling shelf life. This solution has multiple benefits to the stakeholders in the industry value chain. The farmer and aggregator can sell with better assurance to wider export markets and also charge a premium for fresher, tastier and longer lasting fruits. This also provides more time for retailers to sell the produce and to reduce dependency on cold storage and costly supply chain management. This innovation contributes significantly towards better food security and sustainability goals. The technology provider is seeking to conduct further trial with farmers, aggregators in Asia to enhance their solution. Our fruit coating technology utilises ingredients that are vegan, halal, and previously determined to be generally recognized as safe by regulators. These priviledged coatings extend shelf life by controlling water loss, texture deterioration, microbial growth, respiration (O2 and CO2 permeability throught the skin), and senescence processes (modification of internal atmosphere). The team works through the microbial dynamics at each stage of the supply chain, develops and validates region-specific targeted interventions, enhancing the efficacy of our coatings. In summary our solutions enable healthier, fresher and longer lasting tropical fruits through effective control over: Dehydration (We keep the water in to delay the fruit from drying out) Oxidation (We balance the gases movement) Microbial and pathogen growth (We make it difficult for bacteria, yeast, and mould to adversely impact shelf life) The technology provider is looking for collaborators such as retailers, aggregators, importers to farms, distributors and exporters. The technology provider is open for collaborations with like-minded individuals and organisations, specialising or concerned about food security and fruit wastage as a key pressing global challenge. Fruit postharvest processing; fresh agricultural products; fruit exports Widen supply chain options for importers, retail chains and wholesalers Exporters, aggregators or farmer to enable healthier longer lasting fruits for consumers who do not need to consume in a hurry. Nearly a third of the global fruits produced continue to end up in spoilages. Global trade combined for Avocado, mango and papaya exceeds $40b. This represents a significant global market opportunity for the solution, when by investing say 5% of the spends, 20 to 30% wasted spoilage can be saved. This presents an attractive global market potential for $100m potential revenue, considering a conservative 5% of market share*. In Asia alone, due to inadequate supply chains, cold storage and climatic conditions, the fruit losses are even higher. With increasing consumer awareness, fresh tropical fruits are also the most consumed fruits in Singapore and nearby regions. A couple of scenarios below depict the ground-up market potential, considering just for one fruit (papaya or avocado) in these countries.  This potential will only be enhanced further once the added benefits of reduced dependence on packaging, transportation and cold storage are considered.     Market for Papayas in Singapore S$37.1M Retailers’ potential savings from using our solution S$5.4 – 11.2 M   Market for Indonesian Avocados S$637 M Retailers’ potential savings from using our solution S$72 – 153 M Thus, starting off by addressing the challenges faced in Singapore and Asia, the adoption could be expanded for catering to global markets, leading to a multi-million potential in the years to come.  * Major Tropical Fruits: Market Review Preliminary Results (2023), FAO Technology: Our technology revolves around proprietary edible coatings derived from natural plant materials that have antibacterial and antifungal properties. This innovative approach forms a protective film barrier around fruits, significantly protects the fruit from bacterial and fungal growth, and slows down water loss and oxidation—the primary causes of spoilage. Unlike competitors which do not tackle bacteria or fungal infection, limit efficacy or rely on additives or gases to regulate ethylene levels or employ specific packaging solutions, our technology is a one-step process in the supply chain. This unique technology preserves the natural freshness and quality of produce and reduces the need for refrigeration and synthetic preservatives, which can lower overall operational costs. Business Model: We aim to spin off this technology and will operate on a business-to-business (B2B) model, collaborating closely with growers, suppliers, and retailers across the food supply chain. We will generate revenue through licensing our technology and sell our proprietary coatings to partners, alongside providing consulting and integration services. This model allows the technology to scale its impact by embedding our technology directly into existing supply chain processes, optimizing efficiency and reducing food waste. Cost Efficiency: Our technology offers cost efficiency by extending the shelf life of produce without requiring extensive cold chain infrastructure or costly equipment. By reducing the frequency of spoilage and waste throughout the supply chain, we help partners save on losses associated with unsellable produce and logistical expenses related to cold storage and transport. This cost-effectiveness aligns with market demands for sustainable solutions. Fruit spoilage, Food loss, Shelf life extension, Supply chain de-risking, Food security, Environment sustainability Foods, Quality & Safety, Packaging & Storage, Sustainability, Circular Economy, Food Security
Eco-Friendly and Cost-Effective Modular PV RecyclingĀ Solution
The global demand for proper end-of-life management of photovoltaic (PV) panels is rising, with an estimated 78 million tonnes of PV waste expected by 2050. Singapore's rapidly expanding solar industry faces a growing challenge of sustainable disposal as it anticipates a solar capacity of over 1.2GW by 2024. According to International Renewable Energy Agency (IRENA), this could result in 3,000 tonnes of PV waste in 2024-2025 and up to 6,600 tonnes by 2030. Given Singapore's limited land space, there is an urgent need for efficient and profitable recycling solutions to minimize solar panel waste going to landfills. This solution enables PV panel recycling through fully mechanical processes housed in a 40-foot shipping container. Unlike traditional methods that use thermal treatments or harmful chemicals, it employs customized robotic and mechanical processes, producing no chemical waste and consuming less energy. As a mobile solution, it can be deployed directly at decommissioning sites, eliminating the need for transport to centralized facilities and significantly reducing logistics costs. This environmentally friendly, cost-effective solution turns PV waste into a profitable business opportunity. It offers a circular, plug-and-play solution for recyclers looking to quickly expand into solar panel recycling and meet market demands efficiently. It delivers environmental, technological, and commercial benefits. The technology owner is keen to collaborate with local and international e-waste recycling companies with established material networks for aluminium, glass, and silicon, as well as partners with advanced extraction technologies or further upcycling capabilities for silicon and silver. Modular and Scalable Design: housed within a 40-foot shipping container for easy transport and setup Plug-and-Play Deployment: directly powered a single 3-phase, 415V power supply for quick operation Mechanical-Based Recycling: powered by an integrated power distribution board with an HMI panel for real-time monitoring and control of the recycling process IoT-Enabled Tracking: monitors material output and system throughputs, with data uploaded to the cloud for performance tracking Integrated Dust Collection System: ensures effective pollution control during the recycling process Efficient Material Processing: converts solar panels into ready-for-sale materials such as aluminium, glass, copper and silicon, achieving over 99% recovery rate Mobile Recycling Units: its plug-and-play design makes it ideal for temporary setups at different sites, providing a flexible and cost-efficient recycling solution Large-Scale Solar Farm Decommissioning: the decentralized PV recycling line can be deployed directly on-site, enabling in-situ processing of end-of-life solar panels. This reduces logistics costs, especially for large solar projects Solar Panel Manufacturing: helps manufacturers effectively dispose of defective panels produced during production, ensuring proper waste management practices. Modular Scalability: as demand grows, the recycling line can be expanded by adding more modular units, allowing it to adapt to both small and large-scale operations Globally, the solar panel recycling market is projected to be worth USD 385 million in 2024, with a forecasted growth to USD 931 million by 2029, at a CAGR of 19.3%.The largest markets for solar panel recycling are in the Asia-Pacific, North America, and Europe. Recent policy changes in the US and EU, promoting Extended Producer Responsibility for e-waste management, including solar panels, are driving increased demand for cost-effective recycling solutions. The decentralized solar panel recycling solution offers four key advantages over conventional solutions available in the market: Environmentally Friendly: unlike traditional methods that rely on thermal and chemical treatments, this solution uses only robotic and mechanical processes, reducing energy consumption and eliminating hazardous gas emissions Reduced Logistics Costs: the patented containerized design enables easy transport to decommissioning sites like solar farms, eliminating the need to move panels to a centralized facility and significantly reducing logistics costs Streamlined Operations: integrated AIoT features track material output and system throughput, simplifying the recycling process and enabling digital management of recycling operations for greater efficiency Profit Maximization: by minimizing operational costs and maximizing throughput, the solution turns solar panel waste into valuable materials, creating a profitable business opportunity from an industry challenge Solar Recycling, PV, Waste Management, Container, Mobile, Plug-and-Play, carbon footprint Energy, Solar, Waste Management & Recycling, Industrial Waste Management, Sustainability, Circular Economy
Sustainable Outdoor Furniture with Recycled Aluminium
Traditional aluminium production is energy-intensive and increases greenhouse gas emissions. In contrast, recycling aluminium offers a more sustainable alternative, reducing energy consumption and minimising environmental impact. Recycling aluminium can cut carbon emissions by up to 95%, significantly reducing the carbon footprint. This technology aims to promote a circular, sustainable approach by incorporating recycled aluminium into outdoor furniture applications. This technology utilises recycled aluminium pipes of a uniform diameter, reducing material usage and waste. The use of a single angled jig ensures precise and efficient shaping, streamlining the production process without compromising quality. This eco-friendly design is lightweight, weather-resistant, and stackable, making it ideal for both public and private outdoor spaces. With various colours and finishes, it offers long-lasting durability and low maintenance, supporting sustainable manufacturing practices that aligns with modern design standards and promotes a longer product lifecycle. The technology owner is interested to out-license this fabrication technology to furniture companies and further co-develop this sustainable furnishing approach using alternative materials to design eco-friendly furniture. This technology features the use of recycled aluminium pipes with a single diameter, minimising material usage and environmental impact. The use of a single angled jig to bend the consistent pipe profiles ensures precision and efficiency in shaping the design. Other features include: Lightweight design Availability in various colours and finishes Long-lasting weather resistance Low maintenance Stackable design for optimising space management This technology is currently designed for outdoor furniture products but by leveraging on existing manufacturing processes (pipe pending and welding) with recycled aluminium as the primary material choice, it can be extended to other applications requiring the use of recycled aluminium. The technology leverages construction principles and by using standard-diameter aluminium tubes, which are easily sourced and fabricated, eliminates the need for screw fixtures and complex assembly processes, relying instead on efficient manufacturing methods such as metal tube bending and welding. This streamlined approach not only simplifies production but enhances durability. The use of aluminium, a lightweight yet durable metal, ensures long-lasting resistance to tropical weather, while its eco-friendly nature contributes to a lower carbon footprint. Additionally, the stackable design maximizes space efficiency, making it ideal for public spaces where space management is critical. sustainability, circular economy, recycling, recycled aluminium, aluminium, pipe, outdoor furniture, interior, furniture, fabrication, process, design Materials, Metals & Alloys, Sustainability, Circular Economy
Sustainable Clay: Integration of Food Waste With Clay
Clay is a naturally occurring material composed mainly of fine-grained minerals, demonstrating plasticity through a range of water content. Given the low recycling rate of food waste in Singapore (18%), incorporating food waste in existing clay products presents an opportunity to conserve natural resources and develop more sustainable clay materials. This technology involves the development of food waste-incorporated clay, which permits safe biodegradation over time without the use of kiln firing. A selection of food waste is carefully treated and blended into the clay to create sustainable clay with high waste content, high nutrients, great workability, and appropriate shelf-life. Each type of food waste contributes different physical and chemical properties to the clay, affecting its biodegradability and workability. Apart from food waste, a naturally occurring binder is also added to ensure overall biodegradability. By adjusting the formulation of the food waste-incorporated clay, its appearance and other functional properties (such as strength and workability) can be made comparable to conventional clay, with the added benefit of nutrient (calcium, potassium, nitrogen, carbon) leaching capabilities. This creates sustainable, biodegradable clay for various built environment applications. The technology owner is interested in working with companies seeking sustainable clay materials on joint R&D projects, out-licensing and test bedding opportunities. Some features of this sustainable clay material include: Incorporated with high food waste content to provide high nutrient availability Good workability and strength upon drying in atmospheric and oven conditions (50°C, min. 48 hours) Omit the use of high temperature kiln open-firing while maintaining integrity of the clay Appropriate shelf-life in sheltered tropical environment Integrated with biodegradable binder to enhance the binding property between food waste and clay Able to release soluble nutrients upon contact with water Biodegradable over time (within 1-6 months) Potential applications of the sustainable clay material include (but not limited to): Food waste receptacles looking to upcycle food waste into new materials Construction applications e.g., clay tiles Consumer products e.g, pottery clay The global industrial clay market size was worth around USD 5.12 billion in 2022 and is predicted to grow to around USD 7.84 billion by 2030 with a compound annual growth rate (CAGR) of roughly 5.64% between 2023 and 2030. Creates a sustainable clay product through the incorporation of single and multiple food waste types whilst maintaining the workability of conventional clay Permits safe biodegradation over time with added benefit of nutrient leaching capabilities Energy-efficient as it omits the use of kiln firing food waste, clay, biodegradable, sustainable ceramics, built environment, circular economy, upcycling, ceramics, tiles, pottery Materials, Ceramics & Glass, Sustainability, Circular Economy