Platinum group metals (PGMs) are critical raw materials essential in diverse industries, including automotive catalytic converters, jewelry, glassware, petrochemical refining, electronics, and healthcare sectors like pharmaceuticals and dental implants. Primarily sourced through the mining of PGM ores, they constitute about 70% of the global PGM supply, with South Africa and Russia accounting for 85% of this production. This concentration in supply can lead to price gouging and market monopoly. Recycling PGMs from waste not only mitigates the supply shortfall but also reduces environmental impacts compared to mining. However, conventional recycling methods are energy-intensive, requiring temperatures around 1500°C, and involve costly downstream processing to treat waste. Furthermore, the high processing temperatures result in high-value raw materials being burnt and releasing harmful toxins.
The technology owner has developed a novel biorecovery method that incorporates and modifies a series of biochemical and biological processes into a streamlined 3-stage process as opposed to the multi-tiered stages of current conventional methods used in industry. It offers the following advantages over the competition:
The core process and specifications of the technology are summarised as follows:
This technology is ideal for industries that are interested to recycle their spent catalysts. The potential applications are as follows: