Sustainability

Environment

Environmental innovations play a critical role in driving Singapore's sustainability goals. By advancing waste management to promote a circular economy, ensuring pollution control, safeguarding public health, and building climate resilience, these innovations help create a resource-efficient and climate-resilient nation.

IPI’s curated selection of cutting-edge technologies presents enterprises with unique co-creation opportunities to address pressing environmental challenges. In line with the Singapore Green Plan 2030, these solutions empower businesses to contribute to a low-carbon, climate-resilient future, while unlocking new avenues for sustainable growth and long-term business success.

Low-Cost Adsorbents From Spent Coffee Grounds For Industrial Wastewater Treatment
Spent coffee grounds are one of the major food waste produced globally with several million tonnes being discarded annually. It has been reported that only 6% of the original coffee cherry can be used to make a cup of coffee and the remaining balance are inedible and has no value to the industry. As such, a large amount of residue is currently generated from the coffee industry and disposed of at incineration plants or landfills.   This technology features a cost-effective and scalable thermochemical process to transform spent coffee grounds into carbon-rich solid materials, known as hydrochar, as a form of low-cost solid adsorbents for industrial wastewater treatment. Thermochemical processes are well suited for wet biomass such as spent coffee grounds and utilises mild temperature profiles under relatively low pressures. The process also has the potential to convert other kinds of food waste, such as durian husks, coconut husks, fruit peels etc, into hydrochar.This presents a sustainable solution for creating a circular economy and minimising negative impact on the environment by converting non-edible and no value food waste into a value-added product for food and water industries.
Stable, Plant-based Photoactive Antimicrobial Agent
Antimicrobial resistance developed due to the overuse of conventional antimicrobial agents in surface coatings and consumer products is a global concern for treatment of infectious diseases in recent years. To address this concern, US FDA has banned the use of a number of conventional antimicrobial agents in consumer and healthcare products such as hand soaps and hand sanitisers. This raises the importance of alternative antimicrobial agents in antiseptic products. Photoactive antimicrobial agents are effective alternatives which produce highly reactive oxygen species (ROS) when activated by light. These reactive oxygen species display broad-spectrum biocidal activity that destroy microbes by a multi-targeted killing mechanism, which may limit the development of antimicrobial tolerance or resistance. The researchers have developed a stabilised form of a plant-based antimicrobial agent to protect it from environmental degradation. The enhanced environmental stability of this natural photoactive antimicrobial agent has made it suitable to be incorporated in various materials for the self-sterilising product applications and may provide a “greener solution” to limit the spread of pathogens and transmission of infections by indirect contact.