Sustainability

Built Environment

With limited land and a densely populated urban environment, Singapore has embraced advanced technologies and sustainable practices across construction, infrastructure, and urban design. Guided by the ambitious targets of the Singapore Green Plan 2030, Singapore is leveraging a wide range of innovations to address key environmental challenges. From energy-efficient building systems to smart infrastructure and sustainable construction materials, these technologies aim to reduce carbon emissions, optimise resource use, and improve climate resilience.

Enterprises can look to co-developing innovative products and services by tapping on IPI’s curated list of technologies that contribute to Singapore’s sustainable urban future, while unlocking new opportunities in the evolving built environment sector. This ensures that Singapore’s urban areas remain vibrant, sustainable, and adaptable to future environmental challenges, positioning this city-state at the forefront of global green urbanisation efforts.

Sustainable Passive Radiative Cooling Paint for Sub-Ambient Cooling
As global temperatures rise, the increasing demand for cooling has become a critical challenge, particularly in tropical regions. Conventional cooling methods, such as air-conditioning and mechanical ventilation systems, consume significant amounts of electricity and release greenhouse gases, exacerbating global warming. Radiative cooling offers a promising zero-energy alternative by utilizing selective emission of thermal radiation (infrared) to dissipate heat into outer space, effectively lowering the temperature of terrestrial surfaces without heavily relying on air conditioning. The technology offer is a high-performance passive radiative cooling paint (PRCP) with nanoparticles dispersed in a polymeric matrix. Unlike conventional paints, this innovative cooling paint combines high solar reflectivity with high thermal emissivity, reducing surface temperatures below ambient (i.e. below surrounding air temperature). It can reflect incoming solar radiation while simultaneously emit thermal radiation, achieving effective cooling even under direct sunlight. The paint can be applied to buildings and any sky-facing objects to reduce surface temperatures and thereby lower energy consumption and the demand for air-conditioning. When adopted on a large scale, it helps mitigate the urban heat island effect by significantly reducing pedestrian-level air temperatures, improving thermal comfort. In Singapore’s challenging hot and humid climate, this cooling paints has demonstrated the ability to reduce surface temperatures by up to 3⁰C below ambient, providing a proven zero-energy cooling solution. The technology owner is seeking R&D collaboration and test-bedding opportunities with real estate and building owners, developers, architects, facility owners, industrial plant operators, building designers and contractors, and cold chain logistic providers. The technology is also available for licensing to paint developers and manufacturers.
Sustainable Outdoor Furniture with Recycled Aluminium
Traditional aluminium production is energy-intensive and increases greenhouse gas emissions. In contrast, recycling aluminium offers a more sustainable alternative, reducing energy consumption and minimising environmental impact. Recycling aluminium can cut carbon emissions by up to 95%, significantly reducing the carbon footprint. This technology aims to promote a circular, sustainable approach by incorporating recycled aluminium into outdoor furniture applications. This technology utilises recycled aluminium pipes of a uniform diameter, reducing material usage and waste. The use of a single angled jig ensures precise and efficient shaping, streamlining the production process without compromising quality. This eco-friendly design is lightweight, weather-resistant, and stackable, making it ideal for both public and private outdoor spaces. With various colours and finishes, it offers long-lasting durability and low maintenance, supporting sustainable manufacturing practices that aligns with modern design standards and promotes a longer product lifecycle. The technology owner is interested to out-license this fabrication technology to furniture companies and further co-develop this sustainable furnishing approach using alternative materials to design eco-friendly furniture.
Sustainable Clay: Integration of Food Waste With Clay
Clay is a naturally occurring material composed mainly of fine-grained minerals, demonstrating plasticity through a range of water content. Given the low recycling rate of food waste in Singapore (18%), incorporating food waste in existing clay products presents an opportunity to conserve natural resources and develop more sustainable clay materials. This technology involves the development of food waste-incorporated clay, which permits safe biodegradation over time without the use of kiln firing. A selection of food waste is carefully treated and blended into the clay to create sustainable clay with high waste content, high nutrients, great workability, and appropriate shelf-life. Each type of food waste contributes different physical and chemical properties to the clay, affecting its biodegradability and workability. Apart from food waste, a naturally occurring binder is also added to ensure overall biodegradability. By adjusting the formulation of the food waste-incorporated clay, its appearance and other functional properties (such as strength and workability) can be made comparable to conventional clay, with the added benefit of nutrient (calcium, potassium, nitrogen, carbon) leaching capabilities. This creates sustainable, biodegradable clay for various built environment applications. The technology owner is interested in working with companies seeking sustainable clay materials on joint R&D projects, out-licensing and test bedding opportunities.
Silica Aerogel Based Insulation Paint and Plaster for Building and Construction
As global temperatures rise, governments are setting eco-friendly building standards to address concerns about energy consumption and carbon emissions. Improving energy efficiency in buildings, especially in hot climates where cooling demands increase energy use, has become a major challenge. This has driven the need for sustainable and energy-efficient building materials. Aerogels are among the most promising insulation materials due to their large specific surface area (500-1200 m²/g), high porosity (80-99.8%), and ultra-low density (around 0.003 g/cm³). They are amorphous, chemically inert, non-flammable, and exhibit extremely low thermal conductivity (0.01-0.03 W/(m·K)). Silica aerogel (SA) is particularly notable for having the lowest thermal conductivity, making it ideal for building insulation. The technology owner has developed an advanced insulation coating that incorporating in-house fabricated silica aerogel (SA) powders to enhance both thermal and acoustic insulation in buildings. This technology also works with silica aerogel powders purchased externally. Incorporating 20 vol% SA into paint and plaster formulations can reduce surface temperatures by up to 12°C and chamber temperatures by up to 3.3°C, helping to lower air conditioning use and save energy. The coating also improves acoustic insulation, offering a dual benefit. By meeting the growing demand for greener building solutions, this technology offers a competitive edge in reducing energy consumption and improving overall comfort and building performance.   The technology owner is seeking industrial partners for test-bedding and is also open to licensing opportunities for commercialization, especially with construction companies, building material manufacturers, and developers focused on sustainable and energy-efficient construction.
Smart Imaging-Based Water Seepage System for Building & Construction Industry
In the construction sector, manual inspections have traditionally been the primary method for detecting water seepage surface defects, a mandatory requirement for construction projects. However, these inspections often suffer from the inherent subjectivity of human judgment, leading to potential inconsistencies and inaccuracies. To overcome these limitations, a handheld water seepage detection system was developed and rigorously tested in collaboration with the Building and Construction Authority (BCA). This innovative system is designed as a portable, intelligent alternative to traditional methods, aiming to enhance the objectivity and reliability of water seepage detection. The system utilizes advanced Long-Wave Infrared (LWIR) thermal sensing technology to accurately detect temperature variations indicative of water seepage. Unlike manual inspections, which can be prone to error, this system offers precise differentiation between genuine water seepage defects and common artifacts found on construction sites, such as glue and paint. By minimizing false alarms, it provides a more dependable and efficient approach to identifying and addressing water-related issues. This advancement not only improves the accuracy of inspections but also ensures that potential water damage is detected early, reducing the risk of costly repairs and enhancing the overall integrity of construction projects.    
Air Purification Technologies for Ensuring Pristine Air Quality on Ships
Maintaining clean air on ships is crucial for the health and well-being of passengers and crew, as well as for the proper functioning of sensitive equipment. Due to the structural specificity of ships and higher reliance on mechanical air conditioning than natural ventilation, addressing indoor air quality issues is particularly important. Advanced air purification solutions would be able to effectively address a range of airborne contaminants, including particulate matter, volatile organic compounds (VOCs), and biological pollutants, ensuring a safer and more pleasant environment on board. A Korean startup has developed an air sterilisation and purification system tailored specifically to the challenges of maritime environments that excels in delivering clean, safe, and compliant air quality solutions. They enhance health and safety, optimise operational efficiency, and contribute to a better overall experience for passengers and crew, while also meeting regulatory requirements and supporting environmental sustainability. The company is seeking collaborators from the maritime and built environment sectors, as well as HVAC and IoT companies, to expand their applications and explore integration of their technologies into existing HVAC systems.
Common Data Environment
With the increasing complexity and scale of projects, the need for efficient collaboration and information management has become more apparent, especially in large-scale initiatives. In response, many countries have mandated the use of Building Information Modelling (BIM) to enforce stringent construction project management and document control standards. As a result, BIM has been widely adopted across the industry, demonstrating its significant benefits. To better integrate work processes and connect stakeholders throughout the construction and building lifecycle, a Common Data Environment (CDE) is essential. The CDE provides a single source of truth with ISO 19650 full compliance approach to creating, organizing, and communicating information for project collaboration and lifecycle management of facilities. As a key component of digital transformation, the CDE integrates seamlessly with BIM workflows. It is regarded as one of the pillars of construction digitalization, enhancing BIM's effectiveness by serving as a central repository for collaboration throughout the entire project lifecycle. The technology provider seeks collaboration with construction firms, architects, BIM specialists, IT consultants, and facility managers.
Digital Twins for the Built Environment
A Digital Twin is a digital representation of a physical object or system, often used in various industries for simulation, analysis, and monitoring. In the built environment, which encompasses everything from buildings and infrastructure to urban planning, Digital Twins have a wide range of potential applications that can significantly enhance efficiency, sustainability, and overall quality of life. Digital twins have emerged as a transformative concept in the built environment, revolutionizing how buildings, infrastructure, and cities are designed, constructed, and managed. This innovative technology leverages the power of digital simulations and real-time data to create virtual replicas of physical assets, offering numerous benefits across various sectors within the built environment. The technology owner is seeking co-development partnerships with building owners, facity management companies, smart city or urban planners to adopt their digital twin technology in achieving their sustainability objectives.
Practical IoT Solutions for Facility Management, Asset Tracking and Digital Medicine
This technology provides simple, practical, and reliable IoT solutions designed for seamless integration and easy deployment across various industries, including Facility Management, Smart Cities, Asset Tracking, and Digital Healthcare. The solutions are designed for high reliability and low total cost of ownership, featuring easy deployment that requires minimal technical expertise. The technology is built with a carrier-grade design approach, ensuring robust performance and exceptional system longevity. It supports extensive scalability and security features, making it ideal for both public and private network operators. The flexible architecture allows for integration with existing digital infrastructures, facilitating improved operational efficiency and data-driven decision-making, and driving forward the digital transformation agenda This offering is particularly suitable for enterprises seeking to implement smart technologies in utilities, facility management, healthcare systems, and industrial IoT environments.