Sustainability Hub

Built Environment

With limited land and a densely populated urban environment, Singapore has embraced built environment innovation and sustainable practices across construction, infrastructure, and urban design. Guided by the ambitious targets of the Singapore Green Plan 2030, Singapore is leveraging a wide range of innovations to address key environmental challenges. From energy-efficient building systems to smart infrastructure and sustainable construction materials, these technologies aim to reduce carbon emissions, optimise resource use, and improve climate resilience. 

Enterprises can explore co-developing innovative products and services by tapping on IPI’s curated list of technologies for sustainability in the built environment, unlocking new opportunities in this evolving sector. This ensures that Singapore’s urban areas remain vibrant, sustainable, and adaptable to future environmental challenges, positioning the city-state as a leader in global green urbanisation efforts. By fostering sustainability in the built environment, Singapore is setting a global benchmark for how cities can thrive through the use of cutting-edge innovation and eco-friendly practices.

Common Data Environment
With the increasing complexity and scale of projects, the need for efficient collaboration and information management has become more apparent, especially in large-scale initiatives. In response, many countries have mandated the use of Building Information Modelling (BIM) to enforce stringent construction project management and document control standards. As a result, BIM has been widely adopted across the industry, demonstrating its significant benefits. To better integrate work processes and connect stakeholders throughout the construction and building lifecycle, a Common Data Environment (CDE) is essential. The CDE provides a single source of truth with ISO 19650 full compliance approach to creating, organizing, and communicating information for project collaboration and lifecycle management of facilities. As a key component of digital transformation, the CDE integrates seamlessly with BIM workflows. It is regarded as one of the pillars of construction digitalization, enhancing BIM's effectiveness by serving as a central repository for collaboration throughout the entire project lifecycle. The technology provider seeks collaboration with construction firms, architects, BIM specialists, IT consultants, and facility managers.
Digital Twins for the Built Environment
A Digital Twin is a digital representation of a physical object or system, often used in various industries for simulation, analysis, and monitoring. In the built environment, which encompasses everything from buildings and infrastructure to urban planning, Digital Twins have a wide range of potential applications that can significantly enhance efficiency, sustainability, and overall quality of life. Digital twins have emerged as a transformative concept in the built environment, revolutionizing how buildings, infrastructure, and cities are designed, constructed, and managed. This innovative technology leverages the power of digital simulations and real-time data to create virtual replicas of physical assets, offering numerous benefits across various sectors within the built environment. The technology owner is seeking co-development partnerships with building owners, facity management companies, smart city or urban planners to adopt their digital twin technology in achieving their sustainability objectives.
Practical IoT Solutions for Facility Management, Asset Tracking and Digital Medicine
This technology provides simple, practical, and reliable IoT solutions designed for seamless integration and easy deployment across various industries, including Facility Management, Smart Cities, Asset Tracking, and Digital Healthcare. The solutions are designed for high reliability and low total cost of ownership, featuring easy deployment that requires minimal technical expertise. The technology is built with a carrier-grade design approach, ensuring robust performance and exceptional system longevity. It supports extensive scalability and security features, making it ideal for both public and private network operators. The flexible architecture allows for integration with existing digital infrastructures, facilitating improved operational efficiency and data-driven decision-making, and driving forward the digital transformation agenda This offering is particularly suitable for enterprises seeking to implement smart technologies in utilities, facility management, healthcare systems, and industrial IoT environments.
AI-Powered Video Search: Comprehensive Analytics for Safety & Security Across Industries
Industries such as retail, transportation, worksites, and law enforcement increasingly demand robust safety and security solutions. Organizations managing multiple CCTV systems and vast video datasets need advanced video analytics for early threat detection, real-time monitoring, and informed decision-making. Cost-effective solutions that ensure data integrity and regulatory compliance are crucial. Without advanced analytics, organizations face challenges like slow manual reviews, limited real-time alerts, and delayed insights, which hinder timely incident detection and response. The intelligent video deep search and analytics solution addresses these issues by leveraging AI technologies such as deep learning, computer vision, and NLP. It enables real-time processing, quick text-based searches, and accurate detection of objects and behaviors. The code-free alert system allows for rapid deployment without technical expertise, enhancing surveillance capabilities, operational efficiency, and overall security.
Digital Operation and Maintenance Management Solution for Smart Buildings
The rapid development of digitalization is transforming the construction industry, addressing critical challenges such as high energy consumption, elevated management costs, and low operational efficiency. Traditionally, the industry has focused on construction while neglecting operations and maintenance (O&M), relying heavily on manual operations and human experience. These outdated methods are increasingly inadequate for meeting the current demand for smart buildings. Intense competition and high costs have rendered traditional models uncompetitive. Consequently, smart O&M has become essential for improving efficiency, reducing costs, and enhancing service quality in the building and construction industries. The technology owner has developed a full-chain solution that integrates software and hardware, based on their Artificial Intelligence of Things (AIoT) core technology. This solution covers all aspects of building O&M, from underlying hardware devices to upper-level software, intelligent algorithms, and platform services, offering a one-stop solution for various application scenarios. Covering the entire lifecycle of building electromechanical design, construction, operation, and maintenance, it facilitates the digital and intelligent transformation of both new and existing buildings. Additionally, comprehensive low-carbon and energy-saving solutions are provided to maximize the value of energy assets. Supported by digital twins and AI intelligent algorithms, and leveraging a digital platform, the technology owner delivers smart and green solutions to achieve efficient, low-cost, and low-carbon building operation and management. The technology owner seeks collaboration opportunities and partnerships with building portfolio owners and solution providers interested in digital upgrading, energy management, and O&M automation.
AI Solution for Safety Management in High-Risk Industries or Workspaces
High-risk industrial sectors, notably the chemical industry, frequently experience severe safety incidents during production. Traditional risk management approaches, heavily reliant on manual efforts, often suffer from inadequate supervision, incomplete coverage, and suboptimal control. Addressing these challenges, the tech provider offers an advanced solution combining artificial intelligence technologies such as computer vision, the Internet of Things (IoT), and big data analytics. By utilizing existing enterprise cameras and sophisticated algorithmic servers, it establishes a video-based intelligent analysis platform for hidden risk management. This platform enhances overall safety through comprehensive risk perception, proactive hazard identification, predictive warnings, and visual decision-making aids, aiming for widespread and intelligent safety management across high-risk industrial environments.
Cost-Effective Wired Communication Technology Using Existing Wire
In the development of communication networks, various challenges emerge in achieving wireless signal coverage in certain areas, while the cost of deploying traditional wired Ethernet remains prohibitive in specific locations. Industries accustomed to slower wired communications now seek high-speed alternatives to facilitate IoT integration and enhance operational efficiency, yet they are hesitant to undertake extensive rewiring efforts. Building networks across diverse settings, including buildings, condominiums, and factories, often encounters significant cost hurdles. This is primarily due to the need for multiple Wi-Fi repeaters to cover areas with poor signal reach, as well as the requirement for numerous network switches and construction work involving cable installation under floors and above ceilings. A solution lies in technology that facilitates data communication over existing wires within facilities, such as flat cables, twisted pair wires, coaxial cables, and power lines. The effective communication speed varies from several Mbps to several tens of Mbps, depending on the type of cable and the wiring environment. Moreover, this technology seamlessly integrates with Wi-Fi, Ethernet, and other existing infrastructures, providing a cost-effective approach to network construction. By leveraging these technologies, it becomes feasible to establish society's network infrastructure at a reduced cost, particularly in challenging environments such as concrete structures, underground areas, tunnels, and spaces with metal walls.
Solar Reflective Aerogel Paint
Reducing heat transfer across surfaces within built environments and transportation units is critical for optimising energy efficiency in thermal comfort systems and mitigating associated costs and carbon emissions. Implementing measures to minimise heat transfer help maintain liveable thermal conditions and promote environmental sustainability. Some of the efficient methods for reducing heat transfer from the surrounding environment include reflecting solar radiation and providing thermal insulation to minimise heat conduction through surfaces. The technology offered here is a nano-engineered aerogel paint designed to reduce heat transfer across surfaces in the built environment. Unlike traditional solar reflectance paint that merely reflects sunlight, this paint actively minimises solar heat absorption, reducing the reliance on cooling and air conditioning systems and resulting in significant energy savings. Additionally, the paint provides excellent weather resistance and reduces maintenance costs by shielding against ultraviolet (UV) and infrared (IR) emissions, moisture, algae, and fungal growth. Its superior coverage capabilities of up to 3 square meter per liter per coat further contribute to cost savings and ensure long-lasting protection for various surfaces. With a proven track record in increasing energy efficiency for containerised offices and refrigeration trucks, the technology owner is now seeking to expand into other applications through on-site testbedding and performance trials. These include warehouses and building rooftop insulation, enhancing data center energy efficiency, and numerous other potential applications.
Data Centre Electrical Asset Monitoring Platform
Driving sustainability, efficiency and carbon reduction in data centres is a complex and increasingly challenging requirement. The increased global use of high-definition video streaming, conversational AI modelling technologies and online meeting platforms puts increasing strain on data centres.  To meet these complex challenges, an AI, data-driven solution is required. The proprietary solution proposed herein is a data acquisition and analytics system designed for deployment in data centres.  The solution employs non-intrusive clip-on current transformers which are easily installed at electrical distribution boards, which continuously gather current signatures information at a high sampling rate. This enables AI algorithms to detect subtle changes and patterns in the electrical signature of each connected asset or device. Monitoring electrical assets has traditionally been complex and costly, requiring multiple sensors and expensive systems, and often requires deployment near to the asset or device to be monitored. This has led to widespread under-monitoring, resulting in expensive maintenance and significant energy inefficiencies. The solution extracts a proprietary set of deep energy data from electrical devices such as, uninterrupted power supplies (UPSs), Chillers, power distribution units (PDUs) and air conditioning and can be easily installed on both new and existing infrastructure. It offers real-time monitoring and reporting on important metrics such as real-time power usage effectiveness (PUE) and enables automation of sustainability reporting. This technology offers an industry-changing solution: a non-intrusive cost efficient AI-powered monitoring system that is easy to install. It generates a proprietary data set that fuels machine learning algorithms, enhancing efficiency and reducing total cost of ownership for data centre managers and owners.  The technology owner is seeking opportunities to demonstrate the capabilities in the data centre environment, preferably based in Singapore.