Sustainability Hub

Decarbonisation

Reducing greenhouse gas emissions is crucial for limiting global temperature rise and mitigating the impacts of climate change. The urgency of this challenge has driven the development of decarbonisation technologies and innovations across diverse industries.  

From green energy innovations to carbon capture, utilisation, and storage (CCUS), as well as emission tracking and reduction technologies, these curated innovations offer valuable opportunities for enterprises in Singapore. 

By adopting decarbonisation technology, businesses can co-develop cutting-edge products and services that drive green energy innovation and contribute to a sustainable, resilient future. Collaborative efforts in carbon capture innovation further strengthen these sectors, positioning Singapore as a leader in the global shift towards sustainability. The ongoing advancement of decarbonisation technology not only benefits Singapore enterprises but also accelerates the global adoption of green energy and carbon capture innovations.

Low Temperature Membrane-Pervaporation System for High Value Product Concentration
A challenge faced by many chemical processing plants is the high process temperature and high energy consumption. For example, in the Traditional Chinese Medicine (TCM) production process, one of the commonly used approaches of concentrating the medicine is by evaporation. This process operates at 100°C and aims to remove 2/3 of the total amount of water from the feed solution. The main issues are: High operating temperature causing irreversible damage to the active ingredients. Taking up 75% of the overall energy consumed. 2-3 days to process one batch of the extracted liquid. Labour-intensive and hard to scale up. Furthermore, as the production is operated in batch mode, the boiler needs to be turned off and on (heating and cooling) frequently. To overcome these challenges, the membrane – pervaporation system has been developed. The operating principles have been tested at laboratory scale using actual TCM products. The operating temperature can be lowered so that the risk of damage to the active ingredients is reduced. It was computed that an energy saving of 39% can be achieved. The team that designed and developed the system is well-versed with membrane technology and is ready to transfer the know-how and knowledge. They are seeking partners to collaborate and further develop this proof-of-concept for commercial deployment, targeting applications where thermal damage to high value active ingredients are of concern.     
Low-Cost and Flexible Water-Activated Primary Batteries
Recently, the rising adoption of Internet of Things (IoT) devices and portable electronics has made electronic waste (e-waste) pollution worse, especially when small and low-power IoT devices are single-use only. As such, low-cost and environmentally friendly power sources are in high demand. The technology owner has developed an eco-friendly liquid-activated primary battery for single-use and disposable electronic devices. The battery can be activated by any aqueous liquid and is highly customisable to specific requirements (i.e., shape, size, voltage, power) of each application. This thin and flexible battery can be easily integrated into IoT devices, smart sensors, and medical devices, providing a sustainable energy solution for low-power and single-use applications. The technology owner is keen to do R&D collaboration and IP licensing to industrial partners who intend to use liquid-activated batteries to power the devices.