innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Smart Magnetic Sensors for Real-Time Localization of Catheters/Tubes
The malposition of nasogastric tube (NGT) is when the tip is lying in the lungs or the pleural space, leading to pneumothorax, pneumonia and feed empyema and can be fatal. This happens in blind placements and has a 1 - 3% occurrence. Current clinical NGT placement are typically performed blindly without any visual aids. Misplacement is a preventable issue that can delay treatment, increase healthcare costs and put patient safety at risk. This system enhances the accuracy of NGT placement by integrating a flexible guiding stylet with a removable permanent magnet (PM). The magnet allows for easy retrieval and re-insertion, enabling periodic confirmation of the tube's position during feeding. It leverages an external network of magnetic sensors to detect the magnetic field produced by the PM. These sensors, integrated into a smart fabric affixed to the patient, provide real-time feedback through LED indicators that display the exact location of the NGT tip. This technology ensures immediate detection and correction of any misplacement during the insertion process, significantly reducing risks and eliminating the need for repeated imaging or testing, unlike traditional methods that rely on pH tests or radiological imaging to verify the tube’s position. The technology owner is looking for partners to collaborate and further the commercialization of the technology.  The solution uses passive magnetic tracking technology to provide proven, real-time, robust, safe and cost-effective localisation of the NGT during the insertion process as well as subsequent re-confirmation. High accuracy in complex environments with real-time localization: NGT can be located real-time with computational algorithms and a network of sensors allow precise tracking of the NGT’s position, even in the presence of nearby metallic objects, ensuring reliability in diverse clinical environments. Direct and definitive: Quantify the actual position of the NGT unlike the pH method which is indirectly inferring the location of the NGT tip. An integrated sensing display unit contains  Cost-effective and easy integration: Minimal changes to the NGT design and clinical workflow, ensures the solution to be cost effective. Non-invasive detection: External sensors accurately locate the PM through human tissue (e.g., skin, muscle, and bone) due to its low magnetic susceptibility, allowing non-invasive tracking. Technology can be used for real-time localization of medical devices such as nasogastric tubes, catheters, within the body. Its ability to function without line of sight and through non-ferromagnetic mediums like tissue ensures accurate device placement in critical procedures, significantly improving safety in minimally invasive surgeries. The system can overcome the limitations of traditional tracking by providing non-invasive, highly accurate localization without the need for continuous X-rays exposure, offering safer alternatives for real-time feedback. Tracking starts from the critical oesophagus-trachea juncture, all the way to the target gastric-intestinal site, with real time feedback on the actual location.  Easy to use and intuitive: Does not require bulky sensing and electronic systems that is placed on the patient Does not change workflow: The insertion procedure and NGT are fundamentally unmodified Less cumbersome system: System consists of a fully wireless system requiring no auxiliary power and smaller footprint Able to use in home-care setting: Available to be used in home-care setting unlike traditional X-ray methods  Able to handle both initial and subsequent tube confirmations without requiring the NGT to be fully retrieved from the body. Using the novel stylet approach, the NGT can be left inside the body for subsequent re-confirmations. Following confirmation, the stylet can be retrieved so that only the NG tube is left inside the body (exactly the same as it is presently done). Nasogastric Tube (NGT), Localization, Real-time, Permanent Magnet, Tracking Healthcare, Medical Devices, Telehealth, Medical Software & Imaging
Supplement To Improve Inflammation And Osteoarthritis
A diet high in cholesterol and fats can lead to hypertension and may cause low quality of life. This condition can be slowed down with early intervention and proper diet. This product specially formulated with precise ratio of cold pressed black sesame oil and rice bran oil. Natural extracts nourish the bones. Black sesame oil is rich in vitamins and minerals calcium, magnesium, potassium Rice bran oil contains antioxidants and helps you feel more comfortable sleeping and helps balance cholesterol Overall benefits are the ultimate nourishment of bones, knee, the nervous system, brain and memory. The technology provider is seeking to collaborate with healthcare industries. A supplement from natural oils for alternative knee osteoarthritis and rheumatoid treatment in soft gel capsules. The mixture has the effect to suppress the TNF- α, TNF- This technology can be deployed in the food supplement industry and health care, value added raw material in Thailand. Combining two types of Black Sesame Oil and Rice bran oil in the right ratio, bringing effective biological activity such as anti-inflammatory, nourishing bones, knee aches and pains, suitable for health care and NCDs disease group. Benefit of Product for health are the ultimate in nourishment, consisting of Nourishing bones, knee aches and pains Nourish the brain and memory Relieve joint pain Reduce heart disease risk by improving cholesterol levels Nourish the heart Contains antioxidants and helps you feel more comfortable sleeping and helps balance cholesterol. bone nourishment, cold pressed oil, black sesame oil, rice bran oil Personal Care, Nutrition & Health Supplements, Foods, Ingredients
Rapid Formalin Test Kit
The formalin test kit is a paper-based device suitable for detection of formalin contamination in paints, coating material such as pressed wood and plywood, fresh food such as meat, vegetables and fruits with 99.9% sensitivity & specificity, ensuring accurate results without interference. The test kit is quick and easy to use, with rapid results making it accessible for general use. The tech provider is looking for licensee to license the technology. The Formalin test kit consists of three main components: (1) paper-based testing device, (1) control solution bottle, and (3) sample testing vial. The test kit provides rapid analysis and is simple to use by only dropping the sample solution obtained from the reaction vial onto the portable paper-based device (T Zone) to allow the reaction, while the control solution is added to the C Zone to verify the device's validity. After 5 minutes, the test result can be read based on the colour diameter and comparing it to the colour chart indicated on the device to see if the tested material/food is safe. This Formalin Test Kit can be applied in the food, coatings industry to verify the safety of products before use and exporting. It is also useful for public health agencies, testing companies, both governmental and private, as well as for general consumers who wish to conduct testing. A rapid paper-based formalin test kit with innovative detection format by reading the colour diameter for effectively detection of formalin contamination without interference from the food/material background colour. Formaldehyde, Test Kit, Formalin, Coating, Food additive, Paint, Toxin Healthcare, Diagnostics, Environment, Clean Air & Water, Biological & Chemical Treatment, Foods, Quality & Safety
Low-Cost Cultivation of Purple Phototrophic Bacteria (PPB) For Plant Growth Support
Side stream valorisation in sectors such as food and beverage manufacturing has gained substantial interest over the years. The waste streams, in particularly the liquid has high amount of nutrients and organics, in which suitable bioprocesses can be deployed to convert them into value-added products. One product of interest is the purple phototrophic bacteria (PPB), a metabolically diverse group of proteobacteria that contains pigments bacteriochlorophyll a and b. Attributed to its unique versatile metabolic pathways, PPB can be used as powerful pollutant removal in different types of wastewater treatments, under stressful conditions. Its light utilization process and hormone secreting properties also made PPB a good bio-fertilizer and bio-stimulant for plant growth.  This proposed PPB cultivation technology in photobioreactor (PBR) system has greater treatment efficiency and higher biomass conversion rate than conventional open pond systems. Biomass generated from this cultivation technology demonstrated its ability to enhance essential nutrients in soil and supply key plant hormones that aid in plant growth. This novel application of PPB can be adopted in the agriculture industry, in the effort to develop more eco-friendly agricultural inputs.  The technology provider is seeking for collaborators to test bed the technology and to license the technology. The biomass conversion process boasts high efficiency, achieving up to 0.8 grams of biomass for every gram of chemical oxygen demand (COD) removed. Its versatility allows it to work with various types of feed, adaptable to different loads and conditions. High efficiency and robustness of the technology also contribute to more compact system design and lower operating cost. This sustainable approach in PPB production utilizes waste streams from food manufacturing sectors, transforming waste into valuable products. Additionally, biomass generated from the technology offers a novel application in stimulating and supporting plant growth. The PPB technology can be deployed in wastewater treatment processes, to remove organics and pollutants efficiently. PPB can enhance essential nutrients in the soil and support plant growth. It can be used as alternative agricultural inputs such as bio-fertilizer and bio-stimulant, promoting crop yield in a sustainable manner. Value-added product derived from the technology also has high level of protein content, which can be utilised as alternative in animal feed formulation for aquaculture or livestock breeding. This novel compact PPB cultivation technology offers higher treatment efficiency and wider product applications than the conventional open ponds systems. Purple phototrophic bacteria, bio-fertilizer, agriculture, valorisation, microbes, PPB Foods, Quality & Safety, Waste Management & Recycling, Food & Agriculture Waste Management, Sustainability, Food Security
Low-Cost, Intrinsically Safe, and Eco-Friendly Polysulfide Redox Flow Battery
To achieve carbon neutrality, the global expansion of renewable power is essential, but its intermittent nature makes long-duration energy storage (LDES) crucial for stabilizing power generation. Current solutions, such as Li-ion batteries, face significant challenges including safety risks, resource scarcity, and recycling issues, highlighting the need for safer, reliable, and eco-friendly alternatives. Sulphur flow batteries offer a promising solution by using low-cost, earth-abundant materials and storing energy in non-flammable, water-based electrolytes. The battery cost is estimated to be 1/2 of Li-ion and 1/4 of vanadium flow batteries. However, traditional designs suffered from short lifespans and low energy efficiency due to polysulfide crossover and slow reaction kinetics, limiting their commercial viability. The technology owner has developed a breakthrough solution to addresses these challenges. This intrinsically safe, cost-effective, and eco-friendly battery features a proprietary membrane, 20 times cheaper and more selective than commercial Nafion, eliminating polysulfide crossover and improving energy efficiency. Advanced catalysts further enhance reaction rates, resulting in a projected lifespan of over 15 years - double that of Li-ion batteries. Successful pilot production using large-scale roll-to-roll manufacturing has led to the world's first commercial sulphur flow battery with an industrial-grade lifespan. The system charges during off-peak hours and discharges during peak demand, reducing electricity costs by up to 70%. The technology owner is seeking partners to integrate this battery into industrial test-bed sites, including renewable power generation, EV charging stations, and data centres. They are also interested in co-developing energy storage ecosystems in Singapore and establishing supply chain partnerships. The technology is based on two key innovations: Proprietary Non-Fluorinated Ion-Selective Membrane: Eliminates polysulfide crossover, extending the battery life to over 10,000 cycles. It utilises a large-scale, low-cost fabrication process, reducing costs to less than 1/20 of commercially available alternatives Revolutionary Active Organic Molecular Catalyst: Boosts the reaction rate through homogeneous catalysis, improving the battery efficiency by more than 20% and capacity utilisation over 50% Key Features and Specifications: Industrial Applications: The system is integrated into modular 20-ft containers for scalability. Each system includes one power module and 1-3 energy modules. Each power module provides 100 kW of capacity, and each energy module stores 400 kWh. Systems can be interconnected to scale up to 10 MW for larger applications Residential Applications: The system is integrated into cabinets for easy installation. Each power module provides 5 kW of capacity, while each energy module stores 20 kWh of energy Durability: Designed with an IP54 protection level, it is highly durable for outdoor applications, especially in Singapore's hot and humid climate This battery is capable for most energy storage system (ESS) applications. Potential use cases included, but are not limited to: Generation-Side Energy Storage: Provides a solution to store energy from renewable sources, including renewable energy integration Grid-Side Energy Storage: Replaces the diesel genset and ensures grid stability and reliability through peak shaving and load shifting User-Side Energy Storage: Includes electric vehicle (EV) charging station, industrial and commercial applications, residential applications, and long-duration backup power for critical infrastructure such as telecom towers and data centres Ultra-Safe: Utilises non-flammable aqueous electrolytes for inherent safety Low Cost: Made from earth abundant materials, with electrolyte costs only 1/27 that of vanadium flow batteries Eco-Friendly: Non-toxic active materials and 100% recyclable at end of life Flexible: Modular design with flexible discharging time, ideal for long-duration applications Durable: Over 10,000 cycles of lifespan, far exceeding the performance of standard Li-ion batteries Battery, energy storage, flow battery, material science, zero-carbon electricity Energy, Battery & SuperCapacitor, Chemicals, Polymers, Sustainability, Low Carbon Economy
Forecasting the Edible Oil Shelf Life using Machine Learning
Antioxidants (ATOs) such as tocopherol and synthetic ATOs such as Butylated Hydroxytoluene (BHT), Butylated Hydroxyanisole (BHA), and Tertiary-Butyl Hydroquinone (TBHQ) are used in the food and supplement industry to extend shelf life and protect products from oxidation.  Due to concerns over long-term exposure to synthetic ATOs, there is a search for natural alternatives like rosemary and green tea, which have shown efficacy in preserving oils and other products.  However, natural ATOs exhibit significant chemical variations due to diverse cultivation and extraction processes, making it challenging and costly to identify the optimal combination for maximum efficacy.  Machine learning, capable of extracting patterns from input data for predictive analysis, can offer a solution by predicting the peroxide value (PV) in peanut oil using chemical parameters and storage duration. Six machine learning classifiers (logistic regression, multilayer perceptron, radial basis function, Gaussian Naïve Bayes classifier, support vector machine, and decision tree) were employed, with the multilayer perceptron demonstrating the highest predictive performance, achieving an accuracy of at least 89.8% in determining whether PV remains within acceptable limits post-storage in peanut oil.  Edible oil manufacturers, food and beverage companies, natural antioxidant suppliers, food quality testing laboratories and agricultural processors can use this technology to improve the quality and stability of their output. The technology consists of a predictive model based on machine learning algorithms that utilises key chemical parameters to forecast the PV in peanut oil during storage.  Specifically, the model employs six machine learning classifiers: logistic regression, multilayer perceptron, radial basis function, Gaussian Naïve Bayes classifier, support vector machine, and decision tree.  The model uses input parameters such as total phenolic content, total antioxidant content, total carotenoid content, partition coefficient, and storage duration to predict PV, which is crucial for assessing the stability and safety of peanut oil. This technology can be deployed in the food and beverage industry, particularly within sectors focused on edible oil production, food preservation, and food safety testing. It also has applications in the agriculture industry, particularly for oilseed processors, and in the health and wellness industry where natural antioxidants are of interest. This technology can be applied in: 1. Edible Oil Production: To monitor and predict the stability and shelf life of various edible oils during production and storage. 2. Food Preservation: To ensure that food products containing oils remain safe and of high quality throughout their shelf life. 3. Quality Control: As a quality assurance tool to validate the effectiveness of natural antioxidants in preserving food products.   This technology could be marketed in following products/services: 1. Predictive Software for Oil Stability: A software tool designed for oil producers to predict the PV and shelf life of their products. 2. Enhanced Edible Oils: Oils treated with specific formulations of natural antioxidants optimized using the predictive model. 3. Food Quality Monitoring Kits: Integrated solutions combining chemical analysis with the machine learning model for real-time monitoring of oil stability in food products. 4. Consulting Services: Offering expertise in applying this predictive model to optimize food preservation processes. This technology offers significant improvements in the following areas: 1. Predictive Accuracy: Unlike traditional methods that rely solely on periodic testing of PV, this technology leverages machine learning to predict PV with high accuracy, allowing for proactive management of oil stability. 2. Comprehensive Parameter Integration: Integrating multiple chemical parameters, providing a more holistic and precise assessment of oil stability compared to conventional methods that might focus on fewer variables. 3. Reduction in Testing Time and Costs: By accurately predicting PV, this technology can reduce the need for time-consuming stability tests, lowering operational costs and speeding up the decision-making process for product release. 4. Adaptability to Natural Antioxidants: This technology is particularly effective in assessing the stability of oils preserved with natural antioxidants, addressing a growing industry demand for clean-label and natural food preservation methods.   The Unique Value Proposition in comparison to the current “State-of-the-Art”: 1. Machine Learning-Driven Precision: Advanced machine learning algorithms that significantly enhance the precision and reliability of PV predictions are used, setting it apart from conventional approaches. 2. Enhanced Safety Profile: By focusing on natural antioxidants and accurately predicting their efficacy, this technology supports safer food products, meeting consumer for natural preservation methods over synthetic alternatives. 3. Scalability Across Various Oils and Food Products: The technology’s ability to be tailored to different types of oils and food products provides a competitive edge, making it a versatile tool for the industry. Infocomm, Artificial Intelligence
Peptide Enriched Rejuvenating Serum and Radiance Booster
The increase in porcine production in Thailand has led to a rise in the volume of waste and by-products from farrow-to-finish farms. Among these by-products, the porcine placenta is of particular interest due to its rich composition of bioactive components such as cytokines, enzymes, growth factors, collagen, bioactive peptides, vitamins and nucleic acids. Hence, there is growing interest in developing appropriate technologies to derive value from this resource, transforming it into high-value products. This technology presents an innovative serum with the primary ingredient being peptides derived from hydrolysed porcine placenta. The peptides were selected based on specific molecular weight sizes which influence bioactivities. The porcine placenta hydrolysate facial serum was found to reduce melanin production, diminish facial skin dullness, decrease water loss from the skin surface, maintain skin moisture, and enhance facial skin elasticity. The peptides are derived from hydrolysed porcine placenta using enzymatic methods and ultrafiltration membrane separation, which ensures high biological activity. Advanced techniques were used to analyse peptide structures, determining the amino acid sequences that exhibit significant biological activity. Various biological activities were tested both in vitro and in vivo cells, allowing the identification of effective doses.  Rich in epidermal growth factor, antioxidants, anti-tyrosinase, anti-elastase and anti-bacterial peptides, the serum’s efficiency was evaluated on 30 volunteers over one month, adhering to pharmaceutical principles and with proper human research ethics approval. The porcine placenta hydrolysate facial serum was found to reduce melanin production in a month, increase skin firmness and elasticity by 60% in 2 weeks and hydrates the skin after use. The peptides produced from hydrolysed porcine placenta developed for use in various types of skincare and cosmetics. The process can be extended to develop applications as alternate functional food ingredient and dietary supplements. This proprietary technology enables the production of peptides with small particle size that can be absorbed more easily into human skin. Moreover, this product does not need to be further converted to an active form such as in the case of retinol, leading to faster improving skin. Personal Care, Cosmetics & Hair, Nutrition & Health Supplements, Waste Management & Recycling, Food & Agriculture Waste Management, Sustainability, Sustainable Living
Recycled Mixed Polymer Modifiers in Bituminous Materials
The use of plastic waste is severely restricted due to high levels of contamination, expensive sorting processes, and the non-homogeneous nature of the materials. These challenges contribute to low recycling rates both locally and globally, with most plastic waste being disposed of through landfilling or incineration, leading to further environmental concerns.  This technology aims to create sustainable products and processes for infrastructural applications by transforming mixed plastics from municipal solid waste (MSW) into raw materials like fibres, aggregates, and polymer modifiers, which can be incorporated into bituminous mixtures. It is the first of its kind to enable the direct use of MSW mixed plastics without the need for extensive sorting. The as-received mixed plastic waste is processed into standardized forms commonly used in the construction industry. Given the large scale of infrastructure projects, this technology can absorb significant volumes of plastic waste, reducing the demand for landfill space and eliminating greenhouse gas emissions (such as CO2) and toxic pollutants (like dioxins) from incineration.   The technology owner is looking for collaborations (R&D, test-bedding and/or licensing) with oil industry companies, road paving companies, building and construction industry players, waste management centres, institutes of higher learning (IHLs), and government agencies.  The technology incorporates several proprietary systems designed to efficiently process mixed plastic waste. These include:  Sink-float vessels: Provide high separation efficiency, allowing for the effective separation of mixed plastic waste based on density.  Calibration library: Offers accurate real-time measurement of the composition of as-received mixed plastic waste, ensuring precise processing.  Compositional adjustment/standardization unit: Standardizes the composition of mixed plastics to meet industry requirements for infrastructure applications.  Advanced Mechanical Recycling (aMR) process line: A cutting-edge process line that converts mixed plastics into usable raw materials, such as polymer modifiers, for incorporation into bituminous mixtures. These technical features enable the transformation of contaminated, mixed plastic waste into standardized, valuable products for the construction industry.  Substitute for commercial polymer-modified bitumen in asphalt road pavements.  Substitute for commercial polymer modifiers in waterproofing materials.   Coatings and paints for marine, floating, coastal protection, and underground structures.  First-of-its-Kind Technology: Allows direct use of as-received mixed plastics from MSW without the need for costly and complex sorting processes.  Standardized Materials for Infrastructure: Processes mixed, contaminated plastics into standardized materials used in construction, such as polymer-modified asphalt. Consistency Through NIR Calibration Model: Uses a Near Infra-Red (NIR) calibration model and machine learning based on NEA’s plastic composition data to ensure consistent quality of mixed plastic waste.  Enhanced Bituminous Mixtures: Improves technical properties of bituminous mixtures by creating a 3D cross-linked polymer structure within the matrix, enhancing durability.  Cost Savings: Offers 15%-25% cost savings compared to conventional polymer-modified bitumen.  Environmental Impact: Reduces waste going to landfills and incineration, providing a sustainable solution for the construction sector. recycled mixed plastics, polymer modified bitumen, asphalt wearing course, binder testing, environment testing, microplastics, ground water Waste Management & Recycling, Industrial Waste Management, Sustainability, Sustainable Living
Ultra-Thin and Customisable Coating for Passive Cooling
The growing impacts of global warming and rapid urbanization have amplified the demand for innovative thermal management solutions. Urban areas are particularly vulnerable to rising temperatures due to the urban heat island (UHI) effect, where cities become noticeably warmer than rural regions. This leads to higher energy demands for cooling, resulting in increased electricity consumption, rising energy costs, and a greater carbon footprint. To tackle these challenges, the technology owner has developed an energy-efficient and versatile cooling coating designed to reduce heat absorption on various surfaces. By incorporating uniformly dispersed nanofillers into the coating, this solution effectively maintains cooler interior temperatures, reducing the reliance on energy-intensive cooling systems. Ultimately, it results in a significant energy saving and a lower carbon footprint. The adaptable coating can be applied to buildings, vehicles, greenhouses, and other infrastructure, providing protection against thermal degradation. As sustainability and energy efficiency become increasingly important, this eco-friendly solution aligns with market trends in green building practices, urban heat mitigation, and cost-effective energy management. The technology owner is actively seeking partnerships with relevant industrial partners to explore IP licensing opportunities for this technology. Unlike traditional anti-heat coatings that rely on pigments, metallic particles, and microspheres with large particle sizes (>10 µm), which result in an opaque appearance, this technology uses additives with much smaller particle sizes (≤1 µm). This allows for superior light transmission while providing effective thermal protection. The passive cooling coating technology offers the following key features: Enhanced Light Transmission: Utilizes ultra-fine nanoparticles (≤1 µm) as additives Tuneable Passive Cooling: Customisable cooling properties to meet specific needs Uniform Nanofiller Dispersion: Ensures consistent cooling performance Consistent Coating Layer: Ensures smooth application with a highly uniform layer Single-Layer Application: Achieves optimal cooling effects with a thin coating of less than 10 µm Easy-to-Apply: Can be manually applied without requiring complex equipment Potential applications of the passive cooling coating technology include, but are not limited to: Automobiles: Suitable for trains, conventional vehicles, electric vehicles (EVs), etc. Building Applications: Ideal for façades, windows, skylights, and other architectural elements Solar Panels: Helps enhance energy efficiency by minimizing overheating Agriculture: Greenhouse films to improve temperature control in agricultural settings Other Applications: Beneficial for any surface requiring temperature reduction under intense solar exposure Superior Light Transmission: Incorporating ultra-fine additives (≤1 µm) for enhanced transparency while maintaining excellent thermal protection Ultra-Thin and Efficient: Can be applied in a single and smooth layer with a thickness of less than 10 µm, ensuring both efficiency and aesthetic appeal Highly Customisable: Additive types and loadings can be tailored to meet specific cooling and aesthetic requirements, offering great flexibility Commercially Ready Additives: Utilizes readily available additives, eliminating the need for complex laboratory synthesis, making it cost-effective and scalable Ceramic coatings, Anti-heat, Global Warming, Urban Heat Island Chemicals, Coatings & Paints, Green Building, Heating, Ventilation & Air-conditioning, Sustainability, Sustainable Living
Close menu