innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Efficient Voltage Optimisation System for Electrical Energy Saving and Cost Reduction
Rising energy consumption and electricity costs pose significant challenges for all businesses, from light commercial to heavy industrial sectors. Moreover, sustainability has become a crucial component of corporate strategies, particularly within the framework of environmental, social, and governance (ESG). Electrical energy optimisation is not just about cost savings, but also an approach towards resource conservation, power stability, equipment protection, as well as sustainable development. The technology owner has developed a transformer-based voltage optimisation system to reduce energy consumption, optimise electrical power supply, extend equipment lifespan, and lower carbon emissions. This patented technology can control the voltage to an acceptable minimum level and keep the current within the optimum range for best efficiency, providing an immediate and practical way for energy savings. The technology owner is keen to collaborate with industrial partners such as building management, property owners, industrial facility management in manufacturing sectors, etc. The technology owner is also seeking OEM partners to integrate this technology into building management systems (BMS) or co-develop a complete energy saving solution. The core of this technology has the electronic controller regulating the direction of the current in the coil, balancing the phase voltage, and filtering the harmonics from reactive loads, to sustain the highest performance while minimising power loss. The features of this technology are: 8 – 12% reduction in power consumption and electricity bill Improve the quality of overall electrical power supply Over-voltage protection to prolong equipment lifespan Real-time remote monitoring and analysis by app Compact and modular design (easy installation and fast repair) Compatible for both indoor and outdoor installation Enable scalable and customisable adoption for property portfolios Completely self-sufficient solution with virtually unlimited lifespan The voltage optimisation system is applicable for both commercial and industrial applications, especially industrial sectors with energy intensive equipment like motors and cooling devices. The potential applications include but are not limited to: Commercial buildings (shopping malls, office buildings, markets, restaurants, hotels, etc.) Industrial facilities (factories, warehouses, chemical plants, fabrication plants, etc.) Other infrastructures (airports, hospitals, train stations, sports complexes, institutes, etc.) The patented technology offers the following unique features: 8-12% immediate energy savings High efficiency of 99.7% with low system losses Reduce maintenance cost by increasing equipment lifespan Remote monitoring for smart energy management Return on Investment (ROI) in 12-24 months Voltage Optimisation, Energy Saving, Cost Reduction Energy, Sensor, Network, Power Conversion, Power Quality & Energy Management, Electronics, Power Management, Sustainability, Low Carbon Economy
Privacy Friendly Indoor Living Body Localization Using IoT Microwave MIMO Radar
There is an increasing requirement for systems that can detect people in built up space. The requirements come from diverse fields such as safety, security and sustainability. In the field of safety, video cameras or wearables have conventionally been used and both come with significant downsides. Video cameras are highly dependent on the line of sight and are privacy invasive while wearables introduce a burden on the end user. Microwave radar-based solutions are a field of research which can overcome the downsides by being accurate, not burdening the end user and by removing the requirement of line-of-sight. The company provides algorithmic solution in this space based on microwave radar in a Multi Input Multi Output (MIMO) configuration. The solution utilizes biological activity including respiration and heartbeat and consequently does not require measurement of the static environment in advance. The technology consists of an algorithmic solution to allow detection of live bodies using microwave radar. The proof of concept was done using wireless routers with custom antennas. The solution provides a resolution of under 1m for localization. The solution is not dependent on ‘line of sight’. The solution does not require any additional setup process for measurement of static environment and only a simple installation step needs to be performed. Human position is detected based on ‘Angle of Arrival’ calculations. The solution allows shared use of Wi-Fi hardware making it cost competitive versus millimeter wave based solutions. The applications include but are not limited to: Child Safety Monitoring Presence Detection Living Body Localization Security and Intrusion Detection The technology offers a non-invasive and a convenient method of tracking live bodies in a built-up environment. The competing technologies in the space are either inconvenient requiring the person to carry an instrument on them or are invasive because of the use of video cameras. Other non-invasive solutions such as those based on infrared suffer from performance issues as they are adversely affected by environmental factors while the ones using radar and AI require a setup step to recognize the static environment. AI based solutions also lack the capability of localization. An additional advantage of the technology is that it uses standard Wi-Fi allowing routers to compliment or replace additional sensor installation requirements in some cases. Electronics, Sensors & Instrumentation, Radio Frequency, Healthcare, Medical Devices, Infocomm, Internet of Things, Wireless Technology
Harnessing Blowflies for Sustainable Solutions
Blowflies are insects often used for scientific research in fields such as forensics, veterinary science, ecology, and biology. Scientists study them at different stages of their lives, including maggots and adult blowflies.This technology relates to a fully operational and scalable multi-species insectary (Arthropod Containment Level 2) which focuses on harnessing the potential of non-medical blowflies for agricultural and waste management sectors. Firstly, blowfly maggots can be produced at scale to act as biodigesters to break down and convert agri-food waste or side streams to valuable blowfly insect protein. With additional processing, bioactive compounds can be extracted from these insect proteins with diverse applications in medicine and industry. When maggots mature into blowflies, they can be deployed for all-year-round insect pollination instead of bees. This can be conducted in controlled environments, including Indoor Vertical Farms, Greenhouses, and Polytunnels. This application has been validated with state-of-the-art UV lighting technology where blowflies are adept at locating flowers and conducting crucial pollination activities. The technology provider is actively seeking collaborative partnerships with stakeholders from the agriculture sector to enhance crop yields for farmers, while also aiming to collaborate with the waste management industry in order to minimize waste generation and transform it into valuable products through recycling. The insectary is designed with modularity and scalability, allowing for easy expansion or modification of the facility to accommodate various insect populations. It provides a fully contained environment that caters to all stages of the blowfly's life cycle, as well as other insects, ensuring proper housing and management. The insectary maintains a highly controlled environment that complies with Arthropod Containment Level 2 standards, operating as a no-odor facility with negative pressure, approved by National Environment Agency (Singapore). To optimize space utilization within the insectary and maintain separation between different insect populations, insects are carefully housed within netted cages stacked vertically. A specialized diet consisting of homogenized, strictly heterogeneous protein waste is provided to convert waste into valuable insect protein for diverse purposes. The insectary produces a substantial quantity of eggs necessary to sustain a closed-loop protein biodigester system, ensuring a continuous supply of insects for the biodigester. The insectary facilitates the emergence of newly developed blowflies, which can serve as alternative pollinators in Controlled Environment Agriculture (CEA), diversifying and enhancing pollination strategies for improved agricultural productivity. When complemented with a patented UV lighting technology, the insectary creates optimal environmental conditions for flower pollination, stimulating blowflies' active participation in the pollination process. Biodigesters: Blowfly maggots play a crucial role as biodigesters, efficiently converting waste protein into valuable insect protein. This sustainable process not only effectively manages waste but also yields a valuable protein source with diverse applications. Insect Pollinators: Blowflies can serve as effective insect pollinators, detecting flowers that are ready for pollination and being selectively recaptured and removed from indoor farming arenas after completing the pollination process. This innovative approach offers an alternative method of pollination, ensuring optimal crop production and enhancing agricultural sustainability. By harnessing the potential of blowfly maggots in these areas, there is an opportunity to explore innovative and sustainable solutions for both pollination and waste management. This exploration can lead to significant improvements in agricultural practices and resource utilization, contributing to enhanced sustainability in the agricultural sector. This technology also aims to revolutionize the aquaculture industry by eliminating disposables cost associated with waste management in a cost-effective and environmentally friendly manner. Waste Management Capability: The blowfly system is adept at handling high-protein waste, including offal and by-products generated from animal processing facilities like aquaculture. Unlike black soldier flies, blowflies excel specifically in breaking down protein waste. Their effectiveness in degrading protein-rich by-products makes them highly valuable for waste management in industries dealing with such materials. Continuous Supply and Expansion: The continuous supply of blowfly eggs ensures the expansion of current capabilities and guarantees long-term sustainability in waste management practices. This steady availability enables efficient and scalable operations. Ecological Compatibility: The insectary is designed to utilize native blowfly species in any country where it is established, ensuring ecological compatibility. By using local blowfly species, the system maintains harmony with the local ecosystem, promoting biodiversity and ecological balance. Versatile Applications of Insect Protein: Insect protein derived from blowflies serves as a sustainable source of fertilizers and can be further processed to extract bioactive compounds and enzymes. These valuable components meet the demands of medicinal and industrial sectors, expanding the potential uses and commercial value of insect protein beyond waste management. Year-round Pollination: Introducing blowflies as alternative pollinators enables year-round pollination activities, supporting agricultural production regardless of seasonal limitations. This consistent pollination fosters continuous crop growth and yield, contributing to agricultural sustainability. Enhanced Crop Quality and Value: Blowflies, as pollinators, contribute to the generation of better-quality crops, particularly fruiting crops, which command higher value in the market. This enhances the profitability of agricultural producers while meeting the growing demands for high-quality produce, resulting in improved economic outcomes for farmers.         Insectary, Pollination, Waste Valorisation, Agriculture, Biodigestor Life Sciences, Agriculture & Aquaculture, Waste Management & Recycling, Food & Agriculture Waste Management, Sustainability, Circular Economy
Maggot Debridement Therapy: An Effective and Accessible Biotherapeutics
With an ageing population and increased prevalence in diabetic onset, predisposition to chronic wounds including bed sores and diabetic foot ulcers poses a challenging situation for severe wound care management. Maggot Debridement Therapy (MDT), the oldest form of medicine has now re-emerged to be a promising treatment modality for chronic wounds. A biological tool, MDT serves as an alternative to surgical debridement. This involves the clinical use of sterile blowfly maggots to remove devitalized or necrotic tissues and reduce pathogen load. Topically applied to the chronic wound bed, this dressing facilitates better absorption, thereby providing an edge over existing interventions that lead to eventual amputations. Available in 2 forms, caged and uncaged, this live biodressing utilises natural biochemical processes of the blowfly larvae to conduct debridement that is comparable or better than conventional techniques in reducing critical wound healing time window. Uniquely designed to be used in both inpatient and outpatient settings, the biodressing enable surgical level debridement bedside, revolutionizing wound care with their precision and versatility. The technology provided include specifications on the operation of an ISO13485 laboratory, the Standard Operating Procedure (SOP) required for clinical usage of MDT as well as provision of training to the local clinicians on the use of MDT. The technology provider is looking to work with medical companies as well as government/medical institutions that are looking to have their patients under MDT to improve surgical outcomes, reduce the strain on the healthcare team and minimize costs associated with chronic wound care. Provision of SOP, Risk Assessment of an ISO13485 certified laboratory and insectary for the development of biodressing as a medical device globally.  Required documentation for local country registration, as per medical regulations. Provision of training for staff on the management of laboratory and insectary as per international standards (ISO13485). Comprehensive clinical documentation consisting of the placement, management, usage, and disposal of maggots. Techniques on the identification of local blowfly species, collection from habitat and method of laboratory sterilisation provided. Provision of essential QA techniques for the verification of biodressing to be safe and pathogen-free during both manufacture and transportation. Providing training to clinicians on the appropriate use and management of the biodressing. Clinical data obtained from the implementation of MDT shows promising patient outcomes and acceptance amongst the following: Patients deemed too high risk of surgery (i.e., poor blood supply) Diabetic patients with chronic wounds Non-healing wounds (i.e., ulcer injuries) Patients contraindicated for antibiotics With MDT, we are able to drive down amputation rates and clinically acquired infections to prepare the wound bed for accelerated healing and reduce time spent at the hospital. According to MarketsandMarkets, the global diabetes care devices market is poised to reach $4.3 Billion by 2025, growing at a CAGR of 16.2% from 2020 to 2025. With MDT, research studies have shown a threefold decrease in amputation rates. The effectiveness of MDT is evident through local clinical data that has demonstrated a limb salvage rate of 90.9% and a wound closure rate of 45.5% in a challenging patient population. With timely medical assistance rendered, risk of amputations is reduced, leading to a higher life expectancy and the element of quality being restored in their lives with confidence and independence.    Maggots exhibits accuracy and precision in the preparation of chronic wound beds, where it indiscriminately feeds on the necrotic tissues while leaving the healthy intact. Clinical studies on maggot therapy have shown that wounds are cleaned up to 18 times faster when compared to conventional methods that has increased rates of human error. Available in 2 forms: Free Range Larvae and Baggots (Maggots are enclosed within a sterile pouch with pores in the dressing to provide direct contact between larvae and wound bed).  Secretions from maggots have been reported to help reduce chronic inflammation and speed up the healing process. Cycling between MDT and Negative Pressure Wound Therapy (NPWT), the rate of wound healing is optimised, while reducing inflammatory exudate and promoting tissue granulation. MDT has been proven beneficial for high-risk patients with chronic wounds that does not respond well to surgical/conventional modes of wound debridement. This is backed up by statistics that shows a successful debridement after 4 weeks of MDT while necrotic tissues were observed even after 5 weeks of conventional therapies. Able to reach areas that are a challenge to access mechanically. Can be administered on patients outside the confinements of a healthcare facility. Maggot Debridement Therapy, Chronic wounds, Sterile medical-grade maggots, Efficacy, Cost Healthcare, Diagnostics, Medical Devices, Pharmaceuticals & Therapeutics
Method for Enhancing Lignocellulosic Biomass Side Stream Pre-treatment
Lignocellulosic biomass side streams derived from the agri-food value chain such as agricultural residues, have the potential to be converted into high-value products, including biofuel, bio-composite construction materials, and sustainable packaging. Among the various conversion processes, pre-treatment plays a crucial role in maximizing the value of lignocellulosic biomass. The primary objective of pre-treatment is to address the complex and heterogeneous structure of the biomass by removing lignin, reducing biomass size, and increasing the surface area for hydrolysis. Unfortunately, current pre-treatment methods for lignocellulosic biomass are energy-intensive, costly, and produce inhibitory compounds that impact subsequent production stages. To overcome these challenges, this technology offers a catalytic oxidation pre-treatment process. This innovative approach operates under ambient or mild conditions, with a short reaction time, resulting in reduced energy consumption and treatment costs. The technology provider is seeking interested parties from the agricultural, biofuels, or biogas industry to license this catalytic oxidation pre-treatment process to enhance their operations and achieve a more sustainable and cost-effective production of valuable products from lignocellulosic biomass. The pre-treatment technology incorporates alkaline solutions, oxidizing agents, and synthetic catalysts to break down the recalcitrant structure of biomass and release soluble lignin. Mild operating conditions @ 1 atm pressure and 40-50oC Requires lower concentration & smaller volume of chemicals @ < 1% (w/v) Short reaction time (2-3 hours) Inhibitory compounds such as furfural and 5-HMF (Hydroxymethylfurfural) are removed in the process through oxidation This technology is mainly applied to pre-treat residual biomass but can be extended to the following applications: Lignin extraction Municipal sludge Palm Oil Mill Effluent (POME) treatment Recalcitrant wastewater treatment The biofuel industry is expected to grow at a CAGR of 7.9% by 2033. As companies look for more sustainable fuels for vehicles that cannot be easily electrised, biofuels will be the most suitable alternative to fossil fuels to cut down on carbon emissions. Valorization of agricultural waste that is rich in lignocellulosic cells as second-generation biofuels is also gaining prominence. Hence, this pre-treatment technology will be highly relevant in the coming years. Up to 90% energy savings @ ambient working conditions No inhibitory products produced High selectivity on aromatic compounds such as lignin increases the delignification effectiveness Lignocellulose, biomass, agrifood, Residual biomass pre-treatment, agriculture waste valorization, side stream Waste Management & Recycling, Waste-to-Energy, Food & Agriculture Waste Management, Sustainability, Circular Economy
Proprietary Tech To Create Low Glycaemic Index Food & Beverage Applications
Diabetes is a prevalent and growing health problem worldwide, affecting 1 in 10 people, with 90% of cases being type 2 diabetes. Congenital diabetes also affects 1 in 6 live births. In the next 20 years, diabetes is projected to increase by 46%. More than half a billion people are affected globally, 400,000 of them are in Singapore and if nothing is done by 2050, there will be one million diabetics patients in Singapore.   The company offers two technical solutions in form of a blended powder format: 1) Low Glycaemic Index (GI) and 2) Low Glycaemic Index (GI) with added protein.   The blend is plant-based, a source of protein, high in dietary fibre and replaces sugar from 20% to 100% in recipes across various food and beverage applications, it is versatile, high solubility, no alternation to original taste.   The solution is primarily targeted at Food Service sectors operators and manufacturers who seeks to penetrate the reduced sugar food & beverage market.  The technology consists of a proprietary blend (formulated by a renowned research institute based in Singapore) and consist of ingredients and composition that has clinically proven results of lowered GI. Affordable and cost effective compared to functional sugars No alteration to original taste of recipe Versatility of application due to its high solubility The applications include but are not limited to: Beverage Products (Bubble Tea, Ready-To-Drink, Pre-Packaged, Hot & Cold Beverages) Bakery Products (Cookies, Muffins, Pies, Tarts, Cakes, Brownies) Dairy (Milkshakes, Ice Creams, Gelato, Frozen Yogurt) Desserts (Asian & Western) The global reduced sugar food & beverage market size is at US$46.1bil, growing at CAGR of 9.53% in next 5 years, APAC is the fastest growing region, valued at US$12.9bil. It is a global movement to fight against diabetes through educational campaigns and government intervention. The Singapore Government decided to introduce mandatory nutrition labels and advertising prohibitions for Nutri-Grade beverages across all formats. The innovative solution offers immense versatility, catering to a broad spectrum of food items. Unlike the current state-of-the-art, which primarily focuses on baked goods and rice, the technology is not restricted to the same spectrum offered by competitors. The potential applications of the technology are limitless, offering a significant advantage over existing solutions. Furthermore, clinical trials have been conducted to validate the efficacy of the technology in food product sets them apart from the current state-of-the-art. In addition, the company possess the technological capabilities to demonstrate the effectiveness and efficacy of their solution across a broad range of food items. This ability to provide concrete evidence of their technology's efficacy offers a compelling advantage to customers looking to adopt innovative, effective, and reliable solutions to meet the demands of the growing diabetic and obese market. Low GI, Low Glycaemic Index, Low Glycaemic Load, Diabetics friendly, Low Glycemic Index, Obesity, Reduced sugar, Better for you, Keto friendly, Plant based, vegan, Healthier choice, HCS, Nutri grade, Halal certified Foods, Ingredients
Spectral Sensing using TeraHertz radiation method
Terahertz (THz) radiation is a form of electromagnetic radiation that lies in the frequency spectrum ranging between microwaves and infrared light. In the field of Non-Destructive Testing (NDT), THz radiation is utilised to inspect materials for imperfections or anomalies. THz radiation can penetrate numerous non-metallic materials and can reveal internal structures that are not visible in natural light or x-ray imaging. THz-based NDT finds applications in a variety of applicatins, including aerospace, electronics, and medical imaging. Each material possesses a unique fingerprint that enables its identification, differentiation, condition, quantification, and quality of materials through spectroscopy. This technology offer is a spectral sensing technique that utilises accessible terahertz technology. It includes a portable device equipped with industrial-grade sensors and cloud-based data analytics. The technology owner is keen to engage in R&D collaboration with industrial partners in various industries, including pharmaceuticals, food packaging quality inspection and public safety inspection.     The technology offer is a reliable solution for non-disruptive inspection and measurement of materials:  It boasts high accuracy and multi-layer penetration capabilities. The accuracy rate of 95% in laboratory conditions provides users with confidence in the results produced. The wide measurement range of 30μm to 100μm and beyond with an accuracy of approximately ±4μm makes it suitable for various applications. The multi-layer penetration capability of up to four layers of material allows for the inspection of layered materials or detection of defects within multiple layers. Designed to increase productivity and efficiency, the technology provides accurate measurements and multi-layer penetration capabilities for faster decision-making and efficient use of resources. The technology offer is versatile, suitable for quality control and inspection in the manufacturing, electronics, medical, and aerospace industries.   This technology offer can be expanded and deployed in various industry such as: Package inspection Security and screening Spectroscopy, medical imaging Material science, chemical analysis Food quality control Terahertz (THz) technology offers numerous advantages over other radiation-based technologies. One key benefit is its ability to penetrate non-conductive materials, making it useful for imaging and inspecting plastic, paper, wood, cloth, ceramics, and other materials. THz technology is also safe and non-radioactive, making it a preferred choice for imaging and analysis. THz technology is non-contact and non-destructive, making it an ideal tool for Non-Destructive Testing (NDT) applications. It can detect defects and flaws within materials without requiring physical contact and provides high-resolution images with sub-millimeter accuracy. THz technology is valuable for composition identification by analyzing the spectral fingerprints of materials, allowing for non-invasive identification and characterization of materials. This feature is useful for security, pharmaceuticals, and food analysis applications. The technology owner is keen to engage in R&D collaboration with industrial partners in various industries, including pharmaceuticals, food packaging quality inspection and public safety inspection. mmwave, terahertz Electronics, Sensors & Instrumentation, Radio Frequency
Conversion of Lignocellulosic Biomass Side Stream to Plywood Replacement
Plywood is a preferred material used in furniture and home building for its durability since the Egyptian and Roman times. In 2019, the world consumed 165 million cm3 of plywood and was responsible for the creation of more than 3 billion tons of CO2. Applications for plywood are widespread including construction, home, retail, and office interior works and furnishings such as cabinetry, woodworking, renovations, and outfitting. Regulations and protectionism to slow down deforestation plus the tightening of sustainable forestry management lessen the supply of logging for plywood.  As global demand continues to be strong, the search for a viable replacement for plywood has become more pressing. More importantly, it is important to find a non-wood-based replacement with similar performance to plywood. Plywood is desirable because of its superior performance properties. Alternatives like medium-density boards (mdf) and particle boards are made from recycled wood waste. Unfortunately, plywood can only be made from virgin wood and there are no direct replacements for plywood currently. This technology leverages the global abundance of lignocellulosic fibre waste which is the discarded waste material after the harvesting and production of palm oil, rice, and wheat. The technology transforms these lignocellulosic fibre wastes into a direct replacement for conventional plywood.  This provides a sustainable, economically viable, and environmentally friendly solution to the continuing demand for plywood and the resolution to the growing lignocellulosic fiber waste problem in agri-food-based countries all over the world. The technology owner is open to various forms of collaboration including IP licensing, R&D collaboration, and test-bedding with different types of agrifood sidestreams. In the case of palm biomass waste, rice, and wheat straw waste, the technology is ready for commercialization. Produced material comparable to Grade A plywood in all performance parameters including modulus of rupture (MOR), modulus of elasticity (MOE), and water swelling Lower CAPEX & OPEX compared to producing conventional plywood Conversion process able to utilize standard commercial manufacturing equipment Activates the lignin within the agricultural biomass and transforms it into a 'natural superglue’ without commonly used formaldehyde-based binders Utilizes a series of hot presses under swinging and cyclical pressures and temperatures Construction Furniture Packaging Sports Equipment Automotive Industry Marine Industry Based on market research, the plywood industry is projected to experience significant growth from $54.79 billion in the current year to $85.26 billion by 2027, at a compound annual growth rate (CAGR) of 9.4%. With the increasing demand for sustainable materials and the valorization of agricultural waste, there is a potential opportunity for technology to emerge as a sustainable substitute for plywood in this expanding market. Sustainable solution as a direct replacement to plywood that reduces deforestation and recovers tremendous amounts of CO2 Non-added formaldehyde (NAF) Valorized plywood replacement comparable to Grade A plywood A credible global solution that contributes to reversing climate change Valorisation, agrifood, waste to worth, high value Waste Management & Recycling, Food & Agriculture Waste Management, Sustainability, Circular Economy
Converting Seafood Sidestreams Into Nutritious Foods
Asia accounts for approximately 70% of the world’s seafood consumption, around 69.6 million metric tons. This is more than twice the total amount consumed by the rest of the world.* Commercially, about 30% of the seafood is not consumed, from bones to offals, to skin/shell/scales. These food loss and waste potentially impose environmental and socioeconomic issues.  The technology provider has developed a green chemical process converting seafood sidestreams into food products that are not only high value but also nutritious, addressing Singapore’s demand to increase production of nutrient dense foods. In addition, this method is efficient and cost effective as it requires basic equipment. The technology provider is looking for R&D collaborators and for test-bedding especially with industries who are producing aquaculture food with high nutritional value and interested to utilise their sidestreams more sustainably. * FAO 2018 The technology covers waste valorization, food technology, converting them into sustainable high value food. Some key features of the technology are as follows: Low cost production Rich in nutrition which is comparable to commercial high value food Tunable textures and properties Simple processes and equipment needed Product is thermally stable Foods (e.g. collagen rich foods, protein rich products) Supplements to provide amino acids  Customizable solutions achieving high value and nutritious foods with good thermal stability Extremely high yield (>80%) Environmentally sustainable food production through food sidestream valorization Low energy and low cost of production using simple processing methods Scalable process High value food, Aquaculture side stream, Alternative source of protein Materials, Bio Materials, Foods, Processes, Waste Management & Recycling, Food & Agriculture Waste Management, Sustainability, Sustainable Living, Food Security