innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Freshness Preservatives for Vegetables and Flowers
Stomata, tiny pores on the surface of leaves, are opened or closed under the control of a pair of guard cells for gas exchange with the atmosphere. Through these pores, plants uptake the carbon dioxide necessary for photosynthesis and release water by transpiration, which enhances the uptake of nutrients from the roots. Therefore, regulation of stomatal openings is essential for plant growth and survival in response to various environmental conditions.  Improper regulation or dysfunction of stomata can lead to drying out and wilting of vegetables and flowers, resulting in loss of freshness during transportation and hence, wastages. Following a study to improve plants’ drying tolerance and productivity by controlling the opening and closing of plant pores, the research team has identified natural compounds that have the effect of closing the stomata to preserve freshness and successfully developed more potent analogs.  The research team is looking for companies to partner in joint development of applications such as sprays and volatile sheets as freshness retention agents for vegetables and flowers. Freshness preservatives based on analogs of a natural compound found in plants of the order Brassicales Up to 66 times more potent than the natural compound, offering drought resistance to plants Maintains freshness of leafy vegetables and flowers by preventing drying and wilting through the closing the stomata  Application timing is flexible, can be applied whenever drought resistance is needed Suitable for water-based formulations These compounds can be used for the vegetable and flower distribution industry. They could be formulated into various formats to be delivered via direct application, spraying, and volatilisation through packaging materials. By delivering the naturally occurring components of this technology to the leaves and flowers of vegetables and flowering plants, the pores can be closed for an extended period, preventing drying and fading. Unlike existing solutions like abscisic acid derivatives, this compound does not have side effects such as growth inhibition and seed germination suppression. stomata, freshness preservation, drying preservation Chemicals, Agrochemicals, Life Sciences, Agriculture & Aquaculture, Organic, Sustainability, Food Security
Upcycled Nutritious High Protein Powder From Fish
This protein powder is packed with high protein and calcium. Rich in umami taste, this protein powder is an effective natural flavour enhancer, suitable to be incorporated into any kind of foods for more nutritious meals. The protein powder is sustainably sourced and produced from minced fish by-products from the surimi process.  The technology is at pilot scale and is ready for commercial scale up. With an environmentally friendly technology process, the powder is promoting zero waste strategies and SDGs No. 2, 3 ,11, 12 and 13. The technology provider is seeking for collaborators to co-develop and apply the powder into various other products. Nutritious - contains 65% protein and 11% calcium High quality and pure powder Savoury and rich in umami Ready to scale Stored ambient Green processing techniques – freeze drying technology, no chemical additives used   The ideal collaboration partners are ingredients supplier, food manufacturing and food service companies who want to elevate flavour profile of their foods and increase protein content with the functional protein ingredients. Protein powder can apply for various types of foods and beverages. It can add up as the natural flavour enhancer in soups, chilli paste, and savoury menus. Moreover, it can expand the production line from human foods to pet foods as natural flavour enhancer or palatants and it can expand the market into another mega-market. The market value for protein ingredients worldwide was USD $79.94 M in 2022 and forecasted to grow to  USD $114.6 M by 2030*. *Statista 2023 This protein powder with high protein (65%) and high calcium (11.07%) is a unique natural flavour enhancer that has low molecular weight of 16 kDa with all essential amino acid. As a functional ingredient, this protein will add value to food businesses and to individual consumer. Protein powder, high protein, high calcium, zero waste, SGD goals, environmentally friendly production, upcycled, fish byproducts, surimi byproducts Foods, Ingredients, Waste Management & Recycling, Food & Agriculture Waste Management, Sustainability, Food Security
Low-Cost Cultivation of Purple Phototrophic Bacteria (PPB) For Plant Growth Support
Side stream valorisation in sectors such as food and beverage manufacturing has gained substantial interest over the years. The waste streams, in particularly the liquid has high amount of nutrients and organics, in which suitable bioprocesses can be deployed to convert them into value-added products. One product of interest is the purple phototrophic bacteria (PPB), a metabolically diverse group of proteobacteria that contains pigments bacteriochlorophyll a and b. Attributed to its unique versatile metabolic pathways, PPB can be used as powerful pollutant removal in different types of wastewater treatments, under stressful conditions. Its light utilization process and hormone secreting properties also made PPB a good bio-fertilizer and bio-stimulant for plant growth.  This proposed PPB cultivation technology in photobioreactor (PBR) system has greater treatment efficiency and higher biomass conversion rate than conventional open pond systems. Biomass generated from this cultivation technology demonstrated its ability to enhance essential nutrients in soil and supply key plant hormones that aid in plant growth. This novel application of PPB can be adopted in the agriculture industry, in the effort to develop more eco-friendly agricultural inputs.  The technology provider is seeking for collaborators to test bed the technology to license the technology. The biomass conversion process boasts high efficiency, achieving up to 0.8 grams of biomass for every gram of chemical oxygen demand (COD) removed. Its versatility allows it to work with various types of feed, adaptable to different loads and conditions. High efficiency and robustness of the technology also contribute to more compact system design and lower operating cost. This sustainable approach in PPB production utilizes waste streams from food manufacturing sectors, transforming waste into valuable products. Additionally, biomass generated from the technology offers a novel application in stimulating and supporting plant growth. The PPB technology can be deployed in wastewater treatment processes, to remove organics and pollutants efficiently. PPB can enhance essential nutrients in the soil and support plant growth. It can be used as alternative agricultural inputs such as bio-fertilizer and bio-stimulant, promoting crop yield in a sustainable manner. Value-added product derived from the technology also has high level of protein content, which can be utilised as alternative in animal feed formulation for aquaculture or livestock breeding. This novel compact PPB cultivation technology offers higher treatment efficiency and wider product applications than the conventional open ponds systems. Purple phototrophic bacteria, bio-fertilizer, agriculture, valorisation, microbes, PPB Foods, Quality & Safety, Waste Management & Recycling, Food & Agriculture Waste Management, Sustainability, Food Security
Eco-friendly Coating for Preservation of Tropical Fruits
Globally, the post-harvest loss of tropical fruits due to short shelf life is estimated to be around 30-50% of total production. This translates to approximately 30 million tons of fruit wasted each year. The economic cost is substantial, amounting to billions of dollars annually, affecting producers, retailers, and consumers due to reduced availability and increased prices. Proliferation of fungal and bacterial population further adversely impact the shelf life and fruit health. Our innovation offers tailored, edible coating using regulatory approved ingredients specific to the fruit family and microbiomes observed in the farms. Tests conducted in labs and farms over the past two years have provided positive results for tropical fruits such as mango, avocado and papaya in doubling shelf life. This solution has multiple benefits to the stakeholders in the industry value chain. The farmer and aggregator can sell with better assurance to wider export markets and also charge a premium for fresher, tastier and longer lasting fruits. This also provides more time for retailers to sell the produce and to reduce dependency on cold storage and costly supply chain management. This innovation contributes significantly towards better food security and sustainability goals. The technology provider is seeking to conduct further trial with farmers, aggregators in Asia to enhance their solution. Our fruit coating technology utilises ingredients that are vegan, halal, and previously determined to be generally recognized as safe by regulators. These priviledged coatings extend shelf life by controlling water loss, texture deterioration, microbial growth, respiration (O2 and CO2 permeability throught the skin), and senescence processes (modification of internal atmosphere). The team works through the microbial dynamics at each stage of the supply chain, develops and validates region-specific targeted interventions, enhancing the efficacy of our coatings. In summary our solutions enable healthier, fresher and longer lasting tropical fruits through effective control over: Dehydration (We keep the water in to delay the fruit from drying out) Oxidation (We balance the gases movement) Microbial and pathogen growth (We make it difficult for bacteria, yeast, and mould to adversely impact shelf life) The technology provider is looking for collaborators such as retailers, aggregators, importers to farms, distributors and exporters. The technology provider is open for collaborations with like-minded individuals and organisations, specialising or concerned about food security and fruit wastage as a key pressing global challenge. Fruit postharvest processing; fresh agricultural products; fruit exports Widen supply chain options for importers, retail chains and wholesalers Exporters, aggregators or farmer to enable healthier longer lasting fruits for consumers who do not need to consume in a hurry. Nearly a third of the global fruits produced continue to end up in spoilages. Global trade combined for Avocado, mango and papaya exceeds $40b. This represents a significant global market opportunity for the solution, when by investing say 5% of the spends, 20 to 30% wasted spoilage can be saved. This presents an attractive global market potential for $100m potential revenue, considering a conservative 5% of market share*. In Asia alone, due to inadequate supply chains, cold storage and climatic conditions, the fruit losses are even higher. With increasing consumer awareness, fresh tropical fruits are also the most consumed fruits in Singapore and nearby regions. A couple of scenarios below depict the ground-up market potential, considering just for one fruit (papaya or avocado) in these countries.  This potential will only be enhanced further once the added benefits of reduced dependence on packaging, transportation and cold storage are considered.     Market for Papayas in Singapore S$37.1M Retailers’ potential savings from using our solution S$5.4 – 11.2 M   Market for Indonesian Avocados S$637 M Retailers’ potential savings from using our solution S$72 – 153 M Thus, starting off by addressing the challenges faced in Singapore and Asia, the adoption could be expanded for catering to global markets, leading to a multi-million potential in the years to come.  * Major Tropical Fruits: Market Review Preliminary Results (2023), FAO Technology: Our technology revolves around proprietary edible coatings derived from natural plant materials that have antibacterial and antifungal properties. This innovative approach forms a protective film barrier around fruits, significantly protects the fruit from bacterial and fungal growth, and slows down water loss and oxidation—the primary causes of spoilage. Unlike competitors which do not tackle bacteria or fungal infection, limit efficacy or rely on additives or gases to regulate ethylene levels or employ specific packaging solutions, our technology is a one-step process in the supply chain. This unique technology preserves the natural freshness and quality of produce and reduces the need for refrigeration and synthetic preservatives, which can lower overall operational costs. Business Model: We aim to spin off this technology and will operate on a business-to-business (B2B) model, collaborating closely with growers, suppliers, and retailers across the food supply chain. We will generate revenue through licensing our technology and sell our proprietary coatings to partners, alongside providing consulting and integration services. This model allows the technology to scale its impact by embedding our technology directly into existing supply chain processes, optimizing efficiency and reducing food waste. Cost Efficiency: Our technology offers cost efficiency by extending the shelf life of produce without requiring extensive cold chain infrastructure or costly equipment. By reducing the frequency of spoilage and waste throughout the supply chain, we help partners save on losses associated with unsellable produce and logistical expenses related to cold storage and transport. This cost-effectiveness aligns with market demands for sustainable solutions. Fruit spoilage, Food loss, Shelf life extension, Supply chain de-risking, Food security, Environment sustainability Foods, Quality & Safety, Packaging & Storage, Sustainability, Circular Economy, Food Security
Nutritious Plant-based Abalone
The plant-based abalone is designed and prepared with mung beans, which are rich in protein, but the mung bean protein is often treated as a side stream in the industry. The plant-based abalone contains protein content comparable to that of real abalone. It also contains enhanced nutrients such as essential fatty acids which can potentially play a key role in heart health, cancer prevention, cognitive function, skin health, and obesity prevention. In addition, when cooked, this plant-based abalone presents physical properties like the real abalone, at a fraction of the cost. The technology provider is working on larger scale trials to develop optimal methods for central kitchen operations and looking to collaborate with the food industry on R&D and also to license the technology. Affordable and cost-effective compared to real abalones Similar physical properties to real cooked abalones and stable at retort, frozen, thawed and cooked conditions Versatility of application, e.g.plant-based scallops The applications include but are not limited to: High-end Food in Traditional Festivals Cuisines in Central Kitchens, Bars, Restaurants and Hotels Canned Products Pre-Packaged Frozen Products Snacks (South East Asia) Comparable protein content with real abalone Clean label Affordable price Time-saving production (1/4 or 1/24 time of the growth time of abalone) as compared with cultured abalone Sustainable production valorising food by-products of mung bean protein Nutritious, Plant-based protein, Abalone, High protein, sustainable Foods, Ingredients, Quality & Safety, Sustainability, Food Security
Software and AI To Digitize and Automate Seafood Manufacturing and Supply Chains
A smart manufacturing and supply chain platform has been developed, enabling seafood processors to automate and digitize their production, quality control, costing, traceability, cold chain, and inventory workflows using tablet computers, sensors, and IoT devices in real-time on the factory floor. This software is a “low-code” web app that can be easily configured for both simple and complex workflows, suitable for small or large production facilities, and adaptable to the wide variety of seafood processes, including live shellfish, fresh and frozen fish, smokehouses, and industrial-scale canneries. The workflow platform includes advanced modules for IoT hardware integration, artificial intelligence, advanced analytics and reporting, a wireless cold-chain sensor, a consumer tracing app, and computer vision for automated inspection. Generative AI is also integrated into the platform, allowing users to “talk to their data” and upload documents to train the large language model. The platform provides value to customers in three core areas: First, the software and AI reduce labor costs by making data collection, management, and reporting more efficient. Second, the software enables real-time process and inventory control, replacing outdated analog paper record-keeping. Third, the software reduces data errors and strengthens traceability, improving compliance with third-party certifications and food safety regulations. Additionally, it includes AI algorithms for yield prediction, anomaly detection, demand forecasting, and drain weight prediction in the fish canning sector. The software includes a core low-code workflow platform that can be configured for many different types of workflows and processes. The platform can be hosted on the cloud or on premise and includes features such as image and document uploading, inventory and logistics management, cost accounting, email and SMS notifications, data validations and real-time calculations, software integrations, and more. The core platform also includes several operational modules, such as: An advanced analytics module for data visualization and reporting. A generative AI module for exploring data and documents uploaded to the platform, enabling users to “talk to their data”. An interoperability module built on the standards of the Global Dialogue for Seafood Traceability and EPCIS supply chain protocols. An IoT connectivity module for label printers, weigh scales, scanners, and other devices A cold chain module with a remote, wireless temperature sensor communicating via LoRaWAN. A smart camera module programmed with computer vision models for automated visual inspection. An AI-enabled digital helper module programmed with machine learning algorithms for yield prediction, anomaly detection, demand forecasting, drain weight prediction (in tuna canneries), and more. A consumer tracing app that enables seafood businesses to share supply chain and food provenance information with consumers who can trace a QR code. The technology ideal collaborators are seafood manufacturers and supply chain operators. The software and AI platform and optional modules have the following potential digitization applications: Fishing vessel unloading Seafood Production and Quality Control Inventory and Warehousing Sales Orders, Fulfilment and Shipping Laboratory sampling and testing Compliance, ESG and Traceability Reporting Cold chain monitoring Cost accounting (manufacturing) Asset management The technology owner is seeking collaboration with seafood industry stakeholders, including manufacturers, suppliers, and distributors in Singapore and Southeast Asia, who are interested in improving efficiency, traceability, and compliance within the supply chain. Seafood is the most globally traded protein with a trade value of some $194 billion dollars, representing almost half of all seafood production in the world. Approximately 75% of seafood processors and supply chain operators manage their core operations with paper records and Microsoft Excel, lacking real-time business insights and struggling with process and inventory control. The technology offers the following: The platform offers easy and flexible configuration through low-code schemas, providing a user-friendly alternative to the extensive customization required by legacy software solutions. A complete all-in-one solution that includes core workflow digitization and inventory management, advanced analytics, computer vision for automated inspection, process automation, predictive analytics, generative AI, hardware integration, cold-chain monitoring, and consumer marketing and supply chain transparency. Expertise in seafood processing and supply chains is leveraged to enhance data collection and optimization, specifically addressing the needs of seafood companies. Applies artificial intelligence to seafood processing, utilizing advanced machine learning, computer vision, and generative AI technologies. Seafood, Fisheries, Supply Chain, Smart Manufacturing, Software, AI, ML, Computer Vision, Generative AI, Traceability Infocomm, Video/Image Analysis & Computer Vision, Artificial Intelligence, Internet of Things, Foods, Processes, Sustainability, Food Security
Nano Delivery Technology That Resolves Root Rot Diseases in Food Crops
Root rot diseases in food crops are devastating diseases currently without solution. Examples of such diseases are the Basal Stem Rot in oil palms, Fusarium Wilt in bananas, and Phytophthora Root Rot in citrus.  While fungicides have in vitro efficacy, most do not possess phloem mobility and therefore cannot reach the roots to effect treatment. Thus, despite widespread usage of fungicides, root rot diseases are still inadequately treated or are not treated at all. This Nano Delivery Technology imparts phloem mobility to fungicides, allowing them to reach the roots from the application site to treat and protect the crops. The technology is designed as a ready-to-use adjuvant that works with commercialised fungicides. Growers can independently and safely nano encapsulate the fungicides with basic mixing equipment and a simple, one-step mixing process. This technology is patent-pending and ready to market. Imparts phloem mobility to fungicides  Enables fungicides to effectively reach roots from the application site Sustains a residual effect for up to 12 months per treatment Encapsulation material is naturally derived and biodegradable Works with commercialised fungicides such as Hexaconazole 75% WG, Dimethomorph 80% WG and Tricyclazole 75% WDG Simple, one-step mixing process can be handled independently by growers Proven effective in treating root rot disease in oil palms  Helps growers cut losses by 75% The technology can be easily scaled to treat other phloem restricted diseases such as Citrus Greening and address problem statements such as weeds and nutrient deficiencies in food crops. Climate change that results in extreme weather conditions such as heat waves and floods exacerbates the spread and intensity of root rot diseases in food crops. At this time, there is also no known or effective treatment for such devastating diseases. The combined global economic losses from root rot diseases in oil palms, bananas, and citrus alone are more than US$ 5 billion per year. Treats root rot diseases that are currently without solution Works with commercialised fungicides Reduces reapplication frequencies hence labour requirements Accelerates ESG compliance through reduced usage of fungicides Increases growers' climate change resilience Patent pending Ready to market agriculture, agritech, agrifood tech, agrifoodtech, food security, nanotechnology, nano, nano materials, nano encapsulation, agrochemical, crop care, crop protection, herbicide, fertiliser, fertilizer, pesticide, fungicide, root rot, phytophthora, basal stem rot, fusarium wilt, panama, huanglongbing, hlb, citrus greening, delivery technology, precision delivery, delivery, encapsulation, oil palm, HLB, nano delivery, ganoderma, adjuvant, nano particles Materials, Nano Materials, Chemicals, Agrochemicals, Life Sciences, Agriculture & Aquaculture, Additives, Sustainability, Food Security
Precision Delivery Technology Enhancing Biological Pesticide Efficacy
With mounting concerns regarding the environmental and health impacts of conventional chemical pesticides, there is a noticeable shift towards biological alternatives. This trend is fueled by a global demand for sustainable agricultural practices and safer, more environmentally-friendly produce. However, a significant challenge persists: the comparatively lower efficacy of biological pesticides. This technology addresses the challenge of low efficacy in biological pesticides, often caused by environmental factors such as heat, UV exposure, and runoffs, especially prevalent in tropical regions. It utilises plant-derived, biodegradable materials to encapsulate the biological pesticides, protecting them from environmental factors, thereby extending their residual treatment effect and reducing usage volumes and re-application frequencies.  Plant-derived, biodegradable encapsulation material Compatible with commercialised biological pesticides (e.g., bacillus thuringiensis) Simple, one-step encapsulation process completed within 15 minutes using existing mixing apparatus Compatible with existing application equipment such as backpack sprayers and drones Imparts rainfastness within 1 hour Sustains residual effect for up to 3 months per treatment The technology demonstrates versatility, with potential applicability in tackling an array of agricultural challenges such as diseases, weeds, and nutrient deficiencies. It is also applicable for commercialised insecticides such as chlorantraniliprole and imidacloprid. Tailored to address challenges specific to tropical agriculture Enhances efficacy of biological pesticides Reduces biological pesticide consumption Lowers re-application frequencies, minimising costs and labor requirements agriculture, agritech, agrifood tech, agrifoodtech, food security, climate change, encapsulation, agrochemical, crop care, crop protection, herbicide, insecticide, fertiliser, fertilizer, pesticide, fungicide, bagworm, delivery technology, precision delivery, delivery, farming solution, foliar spray, biologicals, bacillus, bio, bio-based, bacteria, fungi Chemicals, Agrochemicals, Life Sciences, Agriculture & Aquaculture, Additives, Bio-based, Sustainability, Food Security
Plasma Activated Water Device for Agricultural Produce Decontamination
Unsafe and contaminated food poses significant global health risks, affecting approximately one in ten people worldwide and leading to economic losses of around $110 billion annually in low and middle-income countries due to reduced productivity and medical expenses. This issue also accounts for an annual burden of 33 million disability-adjusted life years and causes about 420,000 premature deaths. Additionally, the escalating use of pesticides in food production to meet the demands of a growing population contributes to approximately 200,000 deaths each year due to toxic exposure, posing severe threats to both human health and the environment.  This technology, Plasma Activated Water (PAW) provides an eco-friendly, chemical-free decontamination technique which eradicates residual chemicals, inhibiting microbial growth in agricultural produce. The technology is highly effective (95% reliability) in breaking down organic compounds, including pesticides, and destroying microbial pathogens on the surfaces of fruits and vegetables, resulting in an extended shelf-life.  PAW eliminates the need for potentially toxic chemicals for washing, minimizes chemical residues, reducing environmental impact and agricultural losses, thereby lowering costs. It effectively degrades pesticides, enhancing food safety while maintaining nutritional quality and sensory qualities.   The technology owner is seeking collaborations with agricultural companies or Institutes of Higher Learning to test-bed their technology.  Plasma Activated Water (PAW) is an innovative technology that harnesses the reactive properties of plasma to enhance the characteristics of water. The process involves generating an electrical discharge in a gaseous environment, creating a plasma rich in reactive oxygen and nitrogen species (RONS). The use of pin-hole technology allows for precise and controlled plasma generation at the required intensity and location. This technique involves creating a small, focused plasma jet through a pin-hole or narrow aperture, which directs the plasma stream accurately to the target area. This precision ensures effective application, reducing the risk of unintended exposure and increasing treatment efficacy. The focused nature of the plasma jet also minimizes diffusion, resulting in more efficient energy use and lower operational costs. The reactive species interact with the surface of agricultural produce, they effectively deactivate or destroy pathogens, bacteria, and pesticide residues. PAW technology significantly enhances food safety by reducing contaminants in produce by over 50-80%, compared to just 30% with standard water washes.  This technology has the potential to transcend agricultural applications, harnessing its pathogen- and bacteria-destroying capabilities.  Healthcare and Medical Sector: Can be used to irrigate wounds, leveraging its strong antimicrobial properties to clean and disinfect wound sites, promoting faster healing and preventing infections Industrial Wastewater Treatment: To treat industrial wastewater by breaking down pollutants and pathogens, ensuring that the treated water meets environmental regulations  Superior Decontamination Efficiency: Highly Effective: PAW technology significantly reduces contaminants, achieving over 50-80% reduction in pathogens and pesticide residues compared to just 30% with standard water washes. Its decontamination efficiency stands at 95% reliability Broad-Spectrum Antimicrobial Action: PAW effectively eliminates a wide range of microorganisms, including bacteria, viruses, and fungi, providing comprehensive protection Eco-Friendly and Chemical-Free: Minimized Chemical Use: Unlike traditional methods that rely heavily on chemical disinfectants, PAW uses plasma to activate water, significantly reducing the need for potentially harmful chemicals Harmless Byproducts: The reactive oxygen and nitrogen species (ROS and RNS) generated by PAW break down into harmless byproducts, such as water and nitrogen, making it environmentally friendly Environment, Clean Air & Water, Sanitisation, Foods, Quality & Safety, Sustainability, Food Security