innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Upcycling Hair and Feathers into Biodegradable Bioplastics
Keratins are naturally occurring proteins found in hair, feathers, wool and other external protective tissues of animals. They are highly abundant, naturally produced and generally underutilized. At the same time, keratins offer versatile chemical properties that allow interactions with themselves or with other materials to improve behaviour. The technology provider has developed sustainable, biodegradable plastic materials by upcycling keratins derived from hair and feathers. In the preliminary studies, the technology provider has found ways to produce films that have the potential to be used as packaging materials. These films do not disintegrate readily in water, yet they fully degrade in soil within a week. They can be made in combination with other waste-derived biopolymers to improve strength to meet the needs of specific use cases. This technology is available for R&D collaboration, IP licensing, or IP acquisition, with industrial partners who are looking for a green packaging solution and to explore specific-use-case products. The technology provider is also interested to collaborate with the OEM partners having the keratin extraction facility from feathers and hair for the deployment of this technology. Nature-derived material from waste streams (agricultural, livestock and human hair) Tunable strength, ~60% strength of PE film Stable in water over 3 weeks (hydrostability) Fully degraded in soil within 7 days at room temperature without the need for industrial facilities  Protein based film. Possibility to incorporate bioactive functionalities into the film Biodegradable packaging material- these films do not disintegrate readily in water, yet they fully degrade in soil within a week Biodegradable composites-  potential to be combined with existing biopolymers such as cellulose to make strong composites for food contacting packaging and utensils Sustainable upcycling of abundant waste streams Fully biodegradable in a short time within a natural environment Possibility to include bioactives This technology is available for R&D collaboration, IP licensing, or IP acquisition, with industrial partners who are looking for a green packaging solution and to explore specific-use-case products. The technology provider is also interested to collaborate with the OEM partners having the keratin extraction facility from feathers and hair for the deployment of this technology. Waste Management & Recycling, Food & Agriculture Waste Management, Sustainability, Circular Economy
Thermo-Catalytic Hydrogen Production from Plastic Waste
Mixed plastic waste is an abundant resource containing approximately 7-12 wt.% hydrogen (H2). Traditionally, hydrogen is produced from non-sustainable fossil feedstock, such as natural gas, coal and petroleum oil. This technology offer is a thermo-catalytic process that sustainably recovers hydrogen from plastic waste instead. During hydrogen recovery process, instead of releasing carbon dioxide (CO2) that causes greenhouse gas effect, the technology converts emissions into a form of solid carbon, called carbon nanotubes (CNT). Solid carbon is easier to store and handle compared to the gaseous carbon dioxide. Furthermore, carbon can be sold as an industrial feedstock for manufacturing of polymer composites, batteries, concrete, paints, and coatings. With over 150-190 million tonnes of mixed plastic waste ending up in landfills and our environment annually, the technology offers a sustainable solution for the elimination of plastic waste and decarbonization while providing a clean hydrogen supply. Thermo-catalytic production of hydrogen. The hydrogen gas stream produce contains a purity of 60 – 70 vol% for downstream applications. Further purification can be conveniently achieved by conventional separation technologies, such as membranes and pressure swing adsorption Output of hydrogen can be from 500 – 100 kg to 2500 – 5000 kg/day Mixed and contaminated plastic waste can be used as feedstock (eg. municipal plastic waste, flexible laminate packaging waste, marine plastic litter, sorted polyethylene and propylene waste etc.) Hydrogen recovery from plastic waste is up to 70-150 kg hydrogen from 1 tonne of plastic waste, depending on composition and purity of feedstock The maximum amount of greenhouse emissions that can be captured during hydrogen recovery are 2.5-3.4 tonnes CO2 equivalent per 1 tonne of treated plastic waste (subject to plastic waste composition). Carbon is captured in a solid form (CNT), which is easier to store than gaseous greenhouse gas emissions This technology offer is applicable for industries that are keen to recycle plastic waste or looking for alternative clean generation of hydrogen. The potential applications include: Plastic material reprocessing facilities Waste management companies Hydrogen production companies Sustainable production of hydrogen using plastics Reduction of plastic waste pollution No CO2 generated (carbon captured as CNT) Non-selective feedstock (mixed and contaminated plastics can be used) Hydrogen, Hydrogen recovery, Carbon capture, Storage, Decarbonisation, Plastic waste, Sustainability, Recycling, Energy Energy, Waste-to-Energy, Waste Management & Recycling, Sustainability, Circular Economy, Low Carbon Economy
Low-Cost Adsorbents From Spent Coffee Grounds For Industrial Wastewater Treatment
Spent coffee grounds are one of the major food waste produced globally with several million tonnes being discarded annually. It has been reported that only 6% of the original coffee cherry can be used to make a cup of coffee and the remaining balance are inedible and has no value to the industry. As such, a large amount of residue is currently generated from the coffee industry and disposed of at incineration plants or landfills.   This technology features a cost-effective and scalable thermochemical process to transform spent coffee grounds into carbon-rich solid materials, known as hydrochar, as a form of low-cost solid adsorbents for industrial wastewater treatment. Thermochemical processes are well suited for wet biomass such as spent coffee grounds and utilises mild temperature profiles under relatively low pressures. The process also has the potential to convert other kinds of food waste, such as durian husks, coconut husks, fruit peels etc, into hydrochar.This presents a sustainable solution for creating a circular economy and minimising negative impact on the environment by converting non-edible and no value food waste into a value-added product for food and water industries. The technology relates to an innovative and custom-designed thermochemical reactor capable of converting the spent coffee grounds into solid adsorbents also known as hydrochar. Hydrochar particles produced have the following attributes which include a robust mesoporous framework, higher surface area, and functionalised removal of cations, anions and organic pollutants in wastewater. Up to 80% of the organics and chemical oxygen demand can be removed after passing through the hydrochar. After water treatment usage, hydrochar can be repurposed as a soil conditioner which helps in plant germination, closing the loop on food waste. The thermochemical reactor is also capable of converting other food wastes including durian husks, coconut husks, fruit peels, and other non-edible food waste. The technology can be adopted in the food and beverage industry that are looking to upcycle the non-edible and no value food waste into value-added products, such as solid adsorbents. The carbon-rich material, hydrochar, presents a sustainable alternative as the low-cost adsorbent that can attract interest from sectors that require treatment of reject and backwash water. These include industries from semiconductors, petrochemicals, wastewater treatment, desalination, and textiles. Offers a cost-effective process to produce higher value-added products from food waste, creating a circular economy Reduced disposal cost Revenue creation from waste Tailor-made design of thermochemical reactor to produce higher surface area and better efficiency of solid adsorbents from food waste Highly scalable hydrochar, wastewater treatment, sustainable, circular economy, adsorbents, spent coffe grounds, food waste, valorisation, thermochemical Environment, Clean Air & Water, Filter Membrane & Absorption Material, Chemicals, Organic, Waste Management & Recycling, Food & Agriculture Waste Management, Industrial Waste Management, Sustainability, Circular Economy