The human skin is the largest organ of the body, capable of extremely sensitive sensing ability and functional characteristics including elasticity, mechanical resistance and self-healing due to different mechano-receptors and sensory nerves. Electronic skin (e-skin) or synthetic skin, is a thin electronic material that stimulate the characteristics of the skin, making it possible for applications in prosthetics, robotics, wearables devices and percutaneous drug delivery systems.
This patented technology is an e-skin with tactile, pain and temperature sensing, capable of differentiating various mechanical forces, sensory heat or moisture concurrently. It is a promising technology for healthcare applications. Currently, majority of the sensors in the market for healthcare are in rigid forms and for small application areas, which make it difficult for portable and wearable applications in large surface areas. This thin film flexible electronic skin can detect applied pressure and temperature on it. The skin’s electrical resistance varies with applied pressure and temperature. By measuring the skin’s electrical resistance, the applied pressure and temperature can be derived. The skin can be made stretchable to be covered on irregular curved surfaces. These features complement the drawbacks of rigid sensors for healthcare applications.
The technology owner is looking for collaborators in the medical and robotics sectors and potential opportunities outside of healthcare such as beauty and cosmetics.
The electronic skin can be:
Wearable electronic devices with skin-like properties will provide various applications for monitoring of human physiological signals such as body pressure, temperature, motion, and disease-related signals.