Biomarkers are biomolecules and/or physical characteristics found in the body that give a clear picture of a person’s health and fitness. Currently, the golden standard of biomarker testing is through blood tests. However, this method is invasive as it involves drawing blood with a needle. Additionally, blood tests are neither real-time nor continuous which means there is significant delay between testing and receiving results. Such problems can be solved through this invention as this method involves sensing biomarkers within sweat through a skin patch, eschewing the need for needles. Furthermore, the biomarker data can be instantly transmitted to a smartphone application which allows users to continuously monitor their data in a convenient manner.
This technology would be relevant in numerous industries such as sports fitness, beauty, and medical diagnostics; thus, attracting sizable demand for it where there is an unmet need for convenient, accurate and real time detection of accurate biomarkers.
The technology consists of the following main parts:
There are several potential industries where this technology can be customised:
The global wearable health sensors market size accounted for USD 2.9 Billion in 2022 and is estimated to achieve a market size of USD 14.1 Billion by 2032, growing at a CAGR of 17.4% from 2023 to 2032. (Source: Acumen Research and Consulting). With more people becoming health-conscious, there is an escalating demand for technologies that can assist in monitoring and enhancing their health. Wearable health sensors cater to this need by offering real-time data on a range of health parameters. In recent years, significant research has been targeted toward the development of wearable sensing devices for monitoring biomarker levels in nonobtrusively accessible biofluids such as tears, urine, saliva, and sweat. Sweat could be an ideal candidate for prolonged, semicontinuous, and non-obtrusive health monitoring because sweat is a continuously accessible biofluid containing physiologically and metabolically rich information such as biomarkers.
State of the art for biomarker detection is through using blood tests. This technology is an improvement over blood tests as it is non-invasive and increases user convenience. It has advantages in delivering real-time and continuous data to users which creates a clearer picture of the user’s health and fitness, allowing for rapid action to be taken if necessary. This contrasts with blood tests which usually require a few days between blood taking and results publishing.
This technology is an improvement as it can measure relevant biomarkers providing a more insightful view of the user’s health and with modular sensing (meaning products based on this technology can be easily modified to detect different biomarkers or even detect multiple biomarkers at once). The technology serves as a platform for customisation with multiple potential use cases in numerous industries.