Traditional methods of culturing organoids are labor-intensive, time-consuming, and limited in their ability to produce large quantities of organoids with consistent quality and characteristics. This technology enables the production of homogenized organoids of consistent quality. It utilizes specialized conditions to facilitate mass production and automate the cultivation of organoids derived from various tissues and organs, including the liver, kidney, lung, and brain. The IP addresses a need in the marketplace by providing a more efficient and cost-effective method of producing organoids. This technology reduces the time and cost of producing organoids while improving the reproducibility and scalability of the process. This can accelerate drug discovery and development, improve the accuracy of toxicology testing, enable the development of personalized medicine, and eventually replace the need for animal testing in the long-term vision of drug development.
The technology provider will be producing the desired organoids as the end product with a further aim to enable a platform service for toxicity and efficacy testing when fully commercialized. The identity of the organoids will be validated by expression of relevant biomarkers. The end users of this technology are likely to be pharmaceutical companies, biotech firms, academic research institutions, and clinical laboratories. Overall, the technology has the potential to transform the way organoids are produced and used in the biomedical field. The technology owner is actively seeking for R&D collaboration to allow integration into existing protocols and testing with institutions, biotech companies and Contract Research Organizations (CROs).
This solution is intended to be a platform technology to be deployed in the biomedical industry, specifically in drug discovery on molecular drugs or gene therapies, toxicology testing, disease modeling, and personalized medicine, as well as CROs providing testing services and biotech firms developing early-stage drugs.
The products that can be marketed based on this technology are organoid assays derived from various human tissues and organs, such as liver, kidney, lung, and brain. These organoids can be used for various applications, including:
The organoids market is projected to grow at a significant rate in the coming years, with an increasing demand for personalized medicine and improved drug discovery and toxicology testing methods. According to a report by MarketsandMarkets, the organoids market is expected to reach USD 1,642 million by 2025, growing at a CAGR of 20.4% from 2020 to 2025.
The drug discovery outsourcing market was valued at USD 4.03 billion in 2020 and is also expected to grow at a compound annual growth rate (CAGR) of 7.8% from 2021 to 2028, according to a report by Grand View Research. The increasing demand for novel and effective drugs, the rising cost of in-house drug development, and the need to expedite drug development timelines are some of the key factors driving the growth of this market.
Pharmaceutical and biotech companies, as well as academic research institutions, are among the key buyers of drug discovery outsourcing services. These companies outsource drug discovery services to Contract Research Organizations (CROs) and Contract Development and Manufacturing Organizations (CDMOs) to reduce costs and accelerate drug development timelines.
The technology represents a significant improvement over the current state-of-the-art in organoid production. Currently, the most common methods for organoid production involve manual culturing, which is prone to variability and can be time-consuming and labor-intensive. Although some automation, such as the use of microfluidics and robotics, has been incorporated into organoid production, these methods are still limited in terms of organoid yield and quality.
Our technology offers several advantages and differentiates itself from competitors in several ways: