Sustainability

Green Energy and Emissions Management

Reducing greenhouse gas emissions is vital for controlling global temperature rise and curbing climate change. The urgency of this initiative has catalyse the development of green energy innovation solutions across various industries.

Green energy innovation taps on technologies, processes and strategies that utilise sustainable and renewable energy sources to power a more sustainable future. Carbon capture innovation is one of the cutting-edge approaches technologies that aim to reduce greenhouse gas (GHG) emissions associated with energy production and consumption.

From green energy alternatives to carbon capture, utilisation, and storage (CCUS), emissions tracking, and reduction, these curated technologies provide many opportunities for enterprises in Singapore to capitalise by, means of co-development and co-creation to develop products and services across various fields for a sustainable and resilient future.

Portable DC Fast Charger for Electric Vehicles (EVs)
The rapid growth in electric vehicle (EV) adoption has sparked a strong demand for more convenient and reliable charging solutions. As the number of EVs continues to surge, drivers are increasingly seeking fast, flexible charging options to keep their journeys uninterrupted. Mobile charging services offer a promising market opportunity by addressing key challenges such as range anxiety and limited access to fixed charging stations. In response to this demand, the technology owner has developed a portable DC fast charger that provides on-the-spot charging, offering quick and efficient roadside assistance. This compact, user-friendly device allows drivers to swiftly resume their journeys, reducing downtime from unexpected battery depletion. It offers a practical alternative to traditional towing services, helping drivers avoid unnecessary delays. Additionally, the technology extends its reach by equipping tow truck operators with portable chargers, enabling them to offer enhanced roadside support. This solution is valuable for service providers, fleet operators, and insurance companies seeking to differentiate themselves in the competitive EV market. By offering fast and mobile charging, these businesses can enhance customer satisfaction and ensure EV drivers have a reliable backup whenever needed. The technology owner is actively seeking collaboration with relevant partners, including EV manufacturers, operators, service providers, and insurance companies, to expand their service offerings and provide added value to the EV ecosystem.
Outdoor Air Purification Tower
Controlling air pollution, particularly from PM 2.5 particulate matter, is crucial for protecting human health and the environment. These microscopic particles can penetrate deep into the respiratory system, causing serious health issues such as respiratory illnesses, cardiovascular problems, and even premature death. PM 2.5 is a leading cause of poor air quality, especially in densely populated regions of Asia, where industrial emissions, vehicle exhaust, and biomass burning are prevalent. Reducing this pollution is vital to minimizing its harmful health effects and improving air quality.  To address this pressing issue, this technology has been developed that focuses on air purification through an automatic hybrid air purification tower based on a wet scrubber system. This system can capture particles as small as 0.3 microns, significantly reducing PM2.5 levels in the air. The hybrid power system ensures that it operates with lower electricity consumption compared to traditional scrubbers, making it both energy-efficient and effective. Additionally, this technology uses water instead of packing materials reducing waste generation. By leveraging this technology, urban environments can see a marked improvement in air quality, leading to better health outcomes and a cleaner atmosphere for all.  The technology owner seeks collaborations in environmental sustainability, urban development, and public health to support scaling, co-development, R&D collaboration and licensing.  
Durable Dirt Mitigation Surface Coating Solution for Building Exteriors
Managing building exteriors such as aluminium cladding, facades, curtain walls, glass, stone, and solar surfaces can be challenging due to the constant accumulation of dirt, tear marks, and general wear and tear. These issues increase the need for frequent maintenance, driving up costs and resource consumption for property managers and facilities teams. Environmental factors such as rain, UV rays, and pollutants further accelerate the degradation of these surfaces, compromising both aesthetics and durability.  This coating technology offers an innovative solution to these pain points by forming a highly durable, protective layer over surfaces, significantly reducing the need for frequent maintenance. Once applied, the coating enhances surface durability and keeps exteriors pristine and visually appealing, as rain naturally washes away dirt and stains. This not only minimizes the accumulation of grime but also prevents environmental damage, extending the lifespan of treated surfaces, it also reduces long-term maintenance costs, save valuable time, and conserve resources.   This technology aligns with modern architectural demands, providing a revolutionary approach to exterior building maintenance. Embrace the future of property management with this state-of-the-art solution that brings both immediate benefits and long-term value.  The technology owner is looking for collaborations with landlords, property and facilities managers, as well as solar manufacturers and installers for R&D collaborating, test bedding or licensing.
Recycled Mixed Polymer Modifiers in Bituminous Materials
The use of plastic waste is severely restricted due to high levels of contamination, expensive sorting processes, and the non-homogeneous nature of the materials. These challenges contribute to low recycling rates both locally and globally, with most plastic waste being disposed of through landfilling or incineration, leading to further environmental concerns.  This technology aims to create sustainable products and processes for infrastructural applications by transforming mixed plastics from municipal solid waste (MSW) into raw materials like fibres, aggregates, and polymer modifiers, which can be incorporated into bituminous mixtures. It is the first of its kind to enable the direct use of MSW mixed plastics without the need for extensive sorting. The as-received mixed plastic waste is processed into standardized forms commonly used in the construction industry. Given the large scale of infrastructure projects, this technology can absorb significant volumes of plastic waste, reducing the demand for landfill space and eliminating greenhouse gas emissions (such as CO2) and toxic pollutants (like dioxins) from incineration.   The technology owner is looking for collaborations (R&D, test-bedding and/or licensing) with oil industry companies, road paving companies, building and construction industry players, waste management centres, institutes of higher learning (IHLs), and government agencies. 
Metal Alloy Formulation and Development
Materials play a crucial role in the development of metallic products, but traditional alloying methods face significant challenges due to rising costs and the limited supply of key materials, such as copper, which has experienced a price increase of over 60% in the past decade. Additionally, conventional melting processes, such as resistance heating, are often constrained by poor temperature control, uneven heating, and high energy consumption, leading to inconsistent alloy quality and increased production costs. Addressing these issues is essential for improving the economic viability and environmental sustainability of engineering projects. This technology introduces a novel approach that combines unconventional alloying concepts with induction melting to overcome the limitations of traditional methods. By employing multiple high-content alloying elements, this method enables the creation of alloys with unique and enhanced properties that go beyond what is possible with traditional single-element alloys. Induction melting results in uniform heating, reduced energy consumption, and enhanced alloy quality, significantly improving the production process. The technology is capable of developing specialized alloys, such as light metal alloys, while addressing the pain points of material and production costs and environmental sustainability. Specifically, the developed alloys offer microhardness of 95-100 Hv, tensile strength of 305-320 MPa, and an excellent strength-to-weight ratio, providing a competitive alternative to conventional materials like copper and brass. The technology owner seeks collaborations with industry players in appliance manufacturing, aerospace, automotive, construction, and electronics to co-develop and commercialize these advanced resistive heating applications. 
Thin-Film Composite Hollow Fiber Membranes for Oxygen Enrichment
Oxygen enrichment membrane technology is emerging as a promising, cost-effective, and energy-efficient method for producing oxygen-enriched gas (OEG) with oxygen purities of 30-45%. Traditional oxygen production methods, such as cryogenic distillation and pressure swing adsorption, are often costly, energy-intensive, and complex, making them less suitable for applications requiring moderate oxygen enrichment. This innovative technology addresses these challenges through a thin-film composite (TFC) hollow fiber membrane that incorporates a novel use of polydimethylsiloxane (PDMS) as a selective layer on a polyethersulfone (PES) substrate. The PDMS selective layer is applied using a flow coating technique, which is both simple and scalable, allowing for consistent production of high-performance membranes. The technology was upscaled to commercial-sized membrane modules producing 15-53 Nm³/h of OEG with oxygen purities between 31-38%. The membrane system operates at ambient temperatures and pressures, offering significant energy savings and reduced operational costs compared to traditional methods. The benefits of this technology are substantial, including improved cost-effectiveness, enhanced energy efficiency, and flexibility in scalability, making it suitable for a wide range of industrial applications.  The technology owner is seeking collaboration with membrane manufacturers to further scale up this innovative technology, and with end-users who have a demand for oxygen-enriched gas with 30-40% O₂ purity.
A Novel Carbon Nanotube Synthesis Method to Capture and Utilise Carbon Dioxide
Faced with the increasing levels of carbon dioxide, carbon capture, utilisation, and storage (CCUS) technologies have garnered significant attention. However, as most CCUS technologies rely heavily on various forms of monetary support from governments and faced numerous technical and scalability challenges, most of the CCUS facilities developed are unable to achieve financial profitability or even achieve a net reduction of carbon dioxide (CO2) emissions. The technology proposed herein relates to an electrochemical-based CO2 reduction reaction process, which can directly capture and convert CO2 to carbon nanotubes (CNTs), a high-value material that exhibits unique electrical and thermal properties suited for applications in various sectors, including electronics, energy storage, sensors and medical uses. In contrast to synthesis methods that involve complex reactions and expensive catalysts, the proposed method uses a molten salt chemistry that can convert CO2 to cathodic solid carbon nanotubes (CNTs) via the electrochemical process. Although high reaction temperature (about 760 degC) is required, this method is highly controllable and uses cost-effective pure iron catalyst, producing high quality CNTs at a relatively high production rate. Based on preliminary process modeling and technoeconomic analysis, this technology has the potential to be completely CO2-negative without re-emission, is more scalable, and profitable with high quality CNT materials. The technology owner is seeking to collaborate with industry partners and research institutions for joint R&D to advance the lab scale technology to pilot or event industrial production scale, as well as to explore applications for the CNTs produced. Upon further development, the system has the potential to be integrated with existing carbon capture systems to improve their financial viability and achieve carbon negative objective.
Oily Wastewater Treatment Technology using High-Performance Oil-Degrading Microorganisms
The increasing use of fats and oils in food processing has led to higher concentrations in industrial effluents, overwhelming traditional wastewater treatment systems and clogging sewer pipes, which disrupts business operations. Commonly used methods like pressurized floating separation are limited and often result in incineration, increasing waste management costs. Rising treatment costs, odor control, and waste management remain significant concerns for factory operators. This technology uses an innovative "organic treatment method" with powerful microorganisms that decompose fats and oils directly from wastewater. These microorganisms can rapidly degrade various fats and oils, including plant, animal, and fish oils, as well as trans fatty acids, even at concentrations over 10,000 mg/L, using a microbial symbiotic system. Efficiently degrade various fats and oils, including plant, animal, fish oils, as well as trans fatty acids. By decomposing fats and oils directly, it reduces the need for physical separation and incineration, cutting down on industrial waste management costs. This approach also supports sustainable waste reduction and mitigates the risk of clogged sewer pipes. Technology has demonstrated the stable performance of oil decomposition in wastewater throughout a year in a field test at a food oil factory.  The technology owner seeks collaboration with food, oil, and other plants with oily wastewater and wastewater treatment facility providers looking for organic solutions for end users.
Carbon Mineralization Technology for Upcycling of Industrial Solid Waste
With rising concerns about carbon emissions, Carbon Capture, Utilization and Storage (CCUS) plays a crucial role in combating climate change. CCUS helps reduce emissions by capturing carbon from flue gas, removing carbon from the atmosphere, and transforming captured carbon into value-added products. However, conventional CCUS technologies often involved high energy consumption and operational expenses. Current carbon mineralization processes face challenges such as slow reaction rates, limited scalability, and high associated costs. To address these challenges, the technology owner has developed an economically viable carbon mineralization technology that integrates carbon fixation and the reuse of industrial solid wastes in an integrated manner. This technology targets both carbon utilization and long-term carbon storage. It focuses on using alkaline industrial solid wastes, such as steel slag, fly ash, and cement waste, which are rich in calcium and magnesium oxides, to efficiently sequester CO2. The process involves leaching calcium and magnesium ions from slag and precipitating them as carbonates for various applications. This modular technology is scalable and adaptable to different waste materials, promising substantial carbon reduction and transforming industrial waste into valuable resources. Implementing this technology allows steel, cement and chemical companies to tackle high carbon emissions and waste disposal issues simultaneously. The final product, with carbon-negative properties, helps downstream clients reduce the carbon footprint of their products, such as plastic, paper, rubber tires, paint and cement.  The technology owner is seeking collaboration with industrial partners, especially industrial waste producers, high carbon emission plants, cement companies using post-carbonation slag, and manufacturers of paper, plastic, and rubber.